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PREFACE

As stated in the preface to one of the earlier forms in which a part
of this book has appeared:

“The aim of the present work is to furnish the student of pure
or applied science with a self-contained manual of the theory and
manipulation of those measurements in physics which bear most
directly upon his subsequent work in other departments of study
and upon his future professional career.

“Only those experimental methods have been included that are
strictly scientific and that can be depended upon to give good
results in the hands of the average student. Although several
pieces of apparatus, experimental methods, and derivations of

* formule that possess some novelty appear, our fixed purpose has

-
,4/7/ e “;

been to use the standard forms except in cases where an extended

"~ trial in large classes has demonstrated the superiority of the pro-

posed innovation.

“It has been assumed that the experiment is rare that should
be performed before the student understands the theory involved
and the derivation of the formula required. Consequently the
theory of each experiment is given in detail and the required for-
mula developed at length. The more important sources of error
are pointed out, and means are indicated by which these errors may
be minimized or accounted for.

The book is designed to be commenced during the second
college year. The greater part of the experiments requiresi}no
mathematics beyond trigonometry and college algebra. But
wherever the calculus methods would result in economy of time
and mental effort they have been employed.

No student except one specializing in physics would perform
all 108 experiments included in the two volumes. Other students,
after performing the necessary experiments on the properties of
matter, would limit themselves to the groups bearing directly upon

i
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their principal study. Thus, few technical students except those
of electrical engineering would do the work on damped vibration
and harmonic analysis; few except those of chemical engineering
would do the work on indices of refraction, polarimetry, and quan-
titative spectrum analysis.

ERVIN 8. FERRY.

PurDUE UNIVERSITY, LAFAYETTE, INDIANA,
June 14, 1918.
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A HANDBOOK OF
PHYSICS MEASUREMENTS

CHAPTER 1

GENERAL NOTIONS REGARDING PHYSICS
MEASUREMENTS

1. Introductory. — Experimental work has one of two objects;
either to find out what kind of a result follows under given condi-
tions, or to find out the numerical relations between different
quantities. The first class of experiments is called qualitative, the
second quantitative. In the earlier days of any science qualita-
tive experiments are numerous; when the science is more mature,
the majority of the experiments are quantitative. The deter-
mination of various quantitative relations is the object of physics
measurement.

In making a physics measurement, the magnitude of each
quantity concerned has to ‘be expressed in terms of some unit,
and the process of measurement consists essentially in finding
how many times this unit is contained in the given quantity.
The distance between two points, for example, may be expressed
in terms of the number of foot rules which could be laid end to
end between those points.

Some quantities can thus be measured directly, others can be
measured only indirectly. Thus the Young’s modulus of a brass
wire cannot be experimentally determined by finding how many
times the unit of Young’s modulus is contained in the Young’s
modulus of the wire. The Young’s modulus of the wire is usually

determined by measuring a force and three lengths, and from
’ 1
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them calculating the Young’s modulus. The great majority of
physics measurements are indirect measurements.

2. Errors. — Every measurement is subject to errors. In the
simple case of measuring the distance between two points by
means of a steel scale, a number of measurements usually give
different results, especially if the distance is several meters and
the measurements are made to small fractions of a millimeter.
The errors introduced are due in part to:

(1) Inaccuracy of setting at the starting point;

(2) Inaccuracy of setting at intermediate points when the dis-
tance exceeds one meter;

(3) Inaccuracy in estimating the fraction of a division at the
-end point;

(4) Parallax in reading, i.e., the line from the eye to the divi-
sion read not being perpendicular to the scale;

(5) The steel scale not being straight;

(6) The temperature not being that for which the steel scale
was graduated;

(7) Irregular spacing of divisions;

(8) Errors in the standard from which the division of the
steel scale was copied.

Besides the above there are doubtless other sources of error.
It may be well here to note that blunders, such as mistakes due
to mental confusion in putting down a wrong reading, or mistakes
in making an addition, are not usually classed as errors.

Of the above errors, (1), (2), and (3) can be very much de-
creased by having fine divisions on the scale and reading with
microscopes; (4) can be made small by bringing the scale on the
steel scale close to the object to be measured; (5) can be made
very small by using a steel scale of special design, or, in rough
work, by holding the steel scale against a straight edge; (6) can
be nearly eliminated by using the steel scale only at the proper
temperature, or, if its temperature and coefficient of expansion
are known, by calculating a correction to be applied; (7) can be
diminished only by a careful comparison of the lengths of the
different divisions; and for (8) corrections can be applied only
when something is known about the accuracy of the standard
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from which the steel scale was copied. But even with the most
refined methods and the most careful application of corrections,
different measurements of the same distance usually give different
results.

Errors due to (6), (7), and (8) may be determinate errors, i.e.,
errors for which more or less accurate corrections can be calcu-
lated, whereas those due to (1), (2), and (3) are indeterminate
errors, i.e., errors for which corrections cannot be calculated.
Moreover, of those errors for which corrections are not applied,
some, like those due to (1), (2), and (3), will be variable in amount
and will tend to make the value obtained sometimes too large and
sometimes too small; while others, like those due to (7) and (8)
when corrections for them are not applied, will be constant and
will tend to make the value obtained always too large or always
too small.

Since the average value of those variable errors which tend
to make a result too large will after a considerable number of
measurements be about the same as the average value of those
variable errors which tend to make the result too small, the mean
of a large number of measurements is usually nearly free from
variable errors. In order as nearly as possible to do away with
constant errors, the same quantity should be measured by as
many different methods as possible. The results by the different
methods will usually differ somewhat, but from them all a value
can be calculated which is probably nearer the true value than
any one of the separate results.

" '"The magnitude of an error may be defined as the amount by
which the value obtained exceeds the true value. That is, if the
true value — which is not usually known — is denoted by T, the
value obtained by O, and the error by E,

E=0-T. 1)

The magnitude of the correction which ought to be applied
may be defined as the amount which would have to be added to
the value obtained in order to get the true value. That is, if
C denotes the required correction, '

C=T-0. @
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From (1) and (2) it will be seen that the error in a measure-
ment and the correction which ought to be applied to it are equal
in magnitude and opposite in sign. This does not mean that
the error is exactly equal in magnitude to a correction which
actually is applied, because for the correction itself only an approxi-
mate value is usually known.

3. Trustworthy Figures. — Since all measurements are sub-
ject to errors, it is important to be able to determine how many
figures of a result can be trusted.

In direct measurements it is usually possible to make a fairly
accurate estimate of the extent to which a reading can be trusted.
Thus in reading by the unaided eye the position of a fine line
which crosses a steel scale, the reading will not be in error by so
much as a millimeter but pretty surely will be in error by more
than a thousandth of a millimeter. So the extent to which the
reading can be trusted will lie between these limits. A person
who is accustomed to estimating fractions of a small division
will be rather sure of not making an error so great as the tenth of
a millimeter, and he can often trust his reading to a twentleth of
a millimeter.

It is convenient always to put down all the figures that can
be trusted, even if some of them are ciphers. Thus the state-
ment that a distance is 50 cm. implies that there is reason for
supposing that the distance really lies between 45 cm. and 55 cm.,
whereas the statement that the distance is 50.00 cm. implies
that there is reason for supposing that the distance really
lies between 49.95 cm. and 50.05 cm. When the distance is
said to be 50 cm. the second figure is the last in which any
confidence can be placed; when the distance is said to be
50.00 cm., the fourth figure is the last in which any confi-
dence can be placed. If a distance is about 50,000 Km. and
the third figure is the last in which any confidence can be
placed, this fact may be indicated by saying that the distance
is 50.0 - 10° Km.

In indirect measurements the result is usually calculated by some
formula. To find out how many figures should be kept in the
result consider the following two cases:
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(a) If the result is the algebraic sum of several quantities, such
as 314.428, 32.6, and 7.063, it is seen that in the sum, 354.091,
no figure beyond that in the first decimal place can be trusted,
because in the quantity which has the fewest trustworthy deci-
mal places, 2., 32.6, no figure beyond the 6 can be trusted — other-
wise it would have been expressed. So the sum will not be writ-
ten 354.091, but 354.1. This suggests the following rule:

RuLe 1. —In sums and differences mo more decimal places
should be retained than can be trusted in the quantity having fewest
trustworthy decimal places.

(b) If the result is the product of two quantities, such as 314.428
and 32.6, then the product cannot be trusted to more figures
than appear in the quantity having fewest trustworthy figures,
irrespective of the decimal place. To make this clear consider
the following products:

314.428 X 32.4 = 10187.4672
314.428 X 32.6 = 10250.3528
314.428 X 32.8 = 10313.2384
314 X 32.6 = 10236.4

It is seen that if the quantity which is supposed to be 32.6 is
really 32.4 or 32.8, then after the first three figures the true value
of the product differs materially from the value obtained. The
second and fourth of the above products show that if more than
three figures cannot be trusted in one of two quantities which are
to be multiplied, it is not worth while to use more than three —
or at most four — figures of the other. These facts suggest the
following rule:

RuLe II. — In products and quotients mo more figures should
be kept than can be trusted in the quantity having fewest trustworthy
Sfigures.

Until the final result is reached, it is often worth while to
keep one more figure than the above rules indicate.

For logarithms a safe rule is the following:

RuLe II1. — When any of the quantities which are to be multi-
plied or divided can be trusted no closer than 0.01 per cent use a five-
place table, when any of them can be trusted no closer than 0.1 per
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cent use a four-place tavle, and when any of them can be trusted no
closer than 1 per cent use a slide rule.

4. Required Accuracy of Measurement. — From Rule I it
‘will be seen that if a small quantity is to be added to a large
one, the percentage accuracy of the measurement of the small
quantity need not be so great as that of the large one. Thus if
H = a4 b, and if a is about 100 cm. and b about 1 cm., a 1 per
cent error in g will produce in H no greater effect than a 100 per
cent error in b. When quantities are to be added or subtracted,
they should be measured to the same number of decimal places.

From Rule II it will be seen that if a small quantity and a
large one are to be multiplied the percentage accuracy of the
measurement of the small quantity should be at least as great as
that of the large one. Thus if H = ab, a 1 per cent error in @
will produce in H the same effect as a 1 per cent error in b. So
that if a is about 100 em. and b about 1 c¢m., and if b cannot be
trusted closer than 0.01 cm., there is no gain in accuracy by
measuring ¢ much closer than to within 1 ecm. When quanti-
ties are to be multiplied or divided, they should be measured to
within the same fraction of themselves, e.g., all of them within 1
per cent and none of them much closer, or all of them within 0.01
per cent and none of them much closer.

The last statement needs modification in the case of a power.
If the value found for a quantity a is 1 per cent too large, .e., is
1.01 @, then the value that will be obtained for a2 is 1.0201 a,
which is about 2 per cent too large, and the value obtained for a®
is 1.030301 a, which is about 3 per cent too large. In general, if
the value found for a is k per cent too large, the value that will
be obtained for a* will be nk per cent too large. So that a quan-
tity which is to be squared, cubed, or raised to some higher power
should be measured with more care than if it entered the formula
to the first power.
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ERRORS INTRODUCED BY COMMON APPROXIMATIONS

Approx. error

Num- Approx. | When ap- . introduced
ber True valus value plicable How obtained by the
approximation
—a?
a error
1 1+a+a? 14a a small Neglect a3 e.g. {01 — 19
. 0.01 — 0.01%
2 | A+ a+b) | 14a4s | 22040 Neglect ab —ab
small
Expand by binomial m (m—1)
] (14a)™ 1+ ma @ small theorem. Neglect second - a?
and higher powers of a
4 (1+4+a) 14+2a a small Apply (3) —a?
1 1 1+ a)t
] T+a l1—a a small 14+a —a?
Apply 3)
6 vita 14340 | asmall Vita=a+at +ia
Apply 3)
Letb =a + e. Then
b nearly e b —a)
7 vab 1@+ |l toa \/Tb-\/—a‘+u=u\/l+; + 5
Apply (6)
. © @b, @b
sma—a—[z+E—---
8 i . small 3
e ¢ ¢ Neglect third and higher tia
powers
oosa-l—gi-a—“-
9 )
o8 a ! ¢ small Neglect second and higher the
powers
-
tong = 50O _ 13
10 tan e a* a small 08 =cosa a? -ia
1—5+--
2
Apply (5)
1 tana sing | asmall Like (8) and (10) —tat

* Expressed, of course, in radians.
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6. Approximate Formulse. — Beside the errors of observa-
tion, errors may be introduced into indirectly measured quanti-
ties by the use of formule which are only approximate. Thus,
the sine and tangent of small angles are used as equal to the
angles; the reciprocal of (1 4 a) is written equal to (1 — a)
when a is small; 3.14 is used for x; a number of figures are dropped
from the end of a product, etc. Whenever such an approxima-
tion suggests itself, the error introduced by using it should be in-
vestigated and the approximation not made unless the error
thereby introduced is so small as not to affect any figure that
could otherwise be trusted in the result.

The preceding table of a few common approximations may
prove useful.

6. Methods of Expressing Results. — The object of a quanti-
tative experiment is sometimes the measurement of some quan-
tity, and sometimes the determination of the relation between
various quantities. When the relation between several quanti-
ties is sought, the usual method is, keeping all but two of the
quantities constant, to vary by known amounts one of these two
and then determine the changes produced in the other. Another
pair of the quantities is then varied while the rest are kept con-
stant, and so on until a sufficient number of pairs of quantities
have been investigated. The various relations found to exist
between the various pairs of quantltles can then be combined to
give the relation sought.

When one quantity has been given various known values and
the corresponding values of a second quantity have been deter-
mined, the relation between them can always be expressed graph-
ically; it can also be expressed more or less accurately by means
of an empirical formula; and when this formula is sufficiently
simple, the relation can without difficulty be expressed in words.

7. The Graphical Representation of Results. — Suppose that
it is desired to determine the relation between the distance a body
has fallen from rest and the time it has been falling. Suppose
that a number of determinations are made, in each of which a
ball is allowed to fall a known distance, and the time required is
observed, the values obtained being those in the following table:
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Distance fallen Time required Distance fallen Time required
cm. sec. . em. sec.
2.00 0.064 30.00 0.247
5.00 0.101 40.00 0.286

10.00 0.143 60.00 0.350
20.00 0.202

These values may be plotted in the same way that curves z;re
drawn in Analytic Geometry. The scales should be so chosen

0.1

0.2
Time Elapsed in Sec.

Fia. 1.

as to make the curve extend nearly across the sheet in both
directions, unless by so doing a unit in the last place that can
be trusted is represented by a distance greater than one of the
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smallest divisions of the paper. If, for instance, times can be
trusted only to 0.01 sec., then the scale for abscisse chosen in
Fig. 1 is two or three times what it ought to be. If, however, the
times can be trusted to 0.004 sec. or closer, then the scale is satis-
factory. A curve should not always be drawn through all the
points, but should be a smooth curve which fits the points as
nearly as possible. If either scale has been so chosen that a unit
in the last place that can be trusted is represented by one of the
smallest divisions on the paper, a deviation of points from this
curve usually indicates errors of observation.

The curve in Fig. 1 shows at once that the distance fallen
increases as the time increases; but since the curve is not a
straight line, the distance fallen is not proportional to the time.
Since the curve is convex toward the time axis, it follows that
the distance increases at a continually increasing rate, i.e., that
as the body falls it goes continually faster and faster. The
curve also serves to find the distance fallen in any time not much
exceeding 0.3 sec., or to find the time required to fall any distance
not much greater than 60 cm.

The equation of this curve can be readily. determined by the
ordinary methods of analytic geometry.

8. Laboratory Rules and Procedure. — The work is divided
into two parts: First, the experimental work; Second, the re-
port on the experiment. These two are assigned to alternate
meetings of the class.

In preparing for the work of the first period, study carefully
the assigned references for the experiment scheduled for the day.
Before coming to class, fasten with string, several sheets of Form
“B” paper into a Laboratory Cover and fill out the blanks
neatly in freehand lettering. This cover with enclosed sheets is
to be submitted to the instructor in charge. The student will
then write an analysis of the experiment. This is to include
statement of the problem at hand, a definition of the physics
quantities measured, with a complete connected story of the ex-
periment in which is discussed the theory, physics principles in-
volved, the mathematical discussion and a brief procedure. This
is to be written under class-room conditions without use of books
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or notes. The first page is to be left blank for the instructor’s
corrections. Submit this analysis to the instructor for his ap-
proval. _

Next proceed to obtain the necessary data according to direc-
tions. Record every reading made, even if it is exactly the same
as the previous one. Before leaving the laboratory there is to
be filed with the instructor a data sheet, Form “K,” containing
all the observations made, but not calculated values. No numer-
ical value is to be given without a statement of the unit employed.
Numbers of all important pieces of apparatus and position number
should be recorded on this sheet.

On the second period all corrections on the analysis are to be
made first, and then the calculations made from the data. All
results should be expressed in both c.g.s. and f.p.s. system where
possible. Discuss accuracy of results, by comparing with accu-
racy of individual readings. State any conclusions to be drawn
from the experiment. Whenever possible, results are to be ex-
pressed in the form of a curve plotted on Form “F.” This should
be done with drawing instruments and India ink. Give the
curve a title, e.g., “Calibration Curve of Hydrometer No. 26983.”

Do not leave the laboratory until the report is accepted by the
instructor in charge.



CHAPTER II

FUNDAMENTAL MEASUREMENTS AND THE PROPER-
TIES OF MATTER

9. The Measurement of Distance. — The vast majority of
the measurements made in a physics laboratory are ultimately
measurements of distance. Two temperatures, for instance, may
be compared by the difference in the lengths of a thread of mer-
cury; a pressure may be determined from the height of a baro-
metric column, or from the distance that the pointer of a pressure
gauge moves; a difference in time may be measured by the dis-
tance that the hand of a clock has moved; etc.

10. The Meter Stick.— This is the instrument most often
used in the laboratory for the measurement of moderate distances.
Usually the smallest divisions marked on it are millimeters. Since
the last division at each end is liable in time to become worn a
trifle short, the ends are seldom employed. In use, the meter
stick is turned up on its side so as to bring its scale as close as
possible to the object to be measured, some line on the meter stick
is brought as nearly as possible into coincidence with one end of
the distance to be measured, and the reading of each end of the
distance is noted, the tenths of a millimeter being estimated. The
difference between the two readings gives the distance sought.
Division lines which are as close together as a fifth of a millimeter
are usually more confusing than helpful. A very little practice,
however, will make possible the rather accurate estimation of a
tenth of a division, provided the division is not much smaller than
a millimeter.

11. The Micrometer Screw. — For the more accurate measure-
ments of small distances, the principle of the micrometer screw has
many applications. A carefully made screw with a divided head

turns in an accurately fitting nut. An index mark close to the
12 ‘
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divisions on the head shows through how many divisions the screw
has turned. The distance between the threads of the screw divided
by the number of divisions on the head gives the distance the end
of the screw advances when the head is turned through one of its
divisions. The principle of the micrometer screw is employed in
the micrometer caliper, the spherometer, the dividing engine, and
the filar micrometer microscope.

The Micrometer Caliper (Fig. 2) consists of an accurately made
screw which can be advanced toward or away from the stop A.
The whole number of
millimeters distance be-
tween A and B is indi-
cated by the millimeter
divisions on the shank
C wuncovered by the
sleeve D, while the frac-
tion of a millimeter is,
given by the graduated-
circle on the edge of the
sleeve D. If the pitch of the screw is half a millimeter and if
the head is divided into fifty equal spaces, one division on the
shank will be uncovered by the sleeve for every two complete
turns of the screw, and each space on the divided head corre-
sponds to an advance of the screw of 0.01 mm. Thus if tenths
of a division on the sleeve are carefully estimated, a reading can
be trusted to 0.0005 mm.

The “zero reading”’ of the instrument, 7.e., the reading when
B just touches A, should always be recorded. In making a read-
ing, the sleeve is never turned up tight, but only until a very slight
pressure is felt.

In the Spherometer, a micrometer screw passes vertically through
a nut mounted at the center of an equilateral tripod. A distance
corresponding to an advance of the screw through a fraction of a
turn is indicated either by a large divided head attached to the
screw and which moves past a pointer fixed to the nut, or by a
pointer attached to the screw, Fig. 3, and which moves around a
divided circular scale fixed to the nut. The pitch of the screw is -
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frequently 7 mm. and the circular scale is divided into 500 equal
spaces, so that by estimating tenths of a division, a reading can
be made within 0.0001 mm. However, with most spherometers,
several successive settings show that they cannot be trusted much
closer than 0.001 mm., so that it is useless to read the fractions of a
division. The spherometer is es-
pecially useful in measuring the
radius of curvature of spherical
surfaces — whence its name.

Fia. 3. F1a. 4.

The Filar Micrometer Microscope is a microscope that has in the
focal plane of the eyepiece two parallel cross hairs, a and b (Fig. 4),
which can be moved across the field of the microscope by means
of a micrometer screw. In the focal plane there is also a fixed
serrated edge, cd, the teeth of which serve as a scale to indicate the
whole number of turns made by the micrometer screw. The dis-
tance on the microscope stage corresponding to one turn of the
micrometer screw must be determined by focalizing the micro-
scope on a standard scale. The standard commonly used is a
scale having ten divisions to the millimeter. Care is taken to
have the lines of the standard scale parallel to the movable cross
hairs. Readings are made on, say, five consecutive lines of the
standard scale near the left side of the field of view, and then on
the same number near the right side of the field. From the differ-"
ence between the readings for the left-most lines of the two sets is
obtained one determination of the distance corresponding to one
turn of the screw; from the difference between the readings for the
second lines in the two sets is obtained a second determination;
and so on.
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If the pitch of the screw is such that one turn corresponds to a
distance of 0.1 mm. on the microscope stage, and if the head is
divided into 50 parts, one division on ‘the head corresponds to
0.002 mm. With the best microscope it is impossible to distin-
guish lines closer together than about 0.001 mm., but the mean of
a number of careful settings on a very fine line can be trusted to
about 0.0005 mm. In making a setting, the screw should always
be turned up from the same direction in order to avoid errors due
to backlash. '

12. The Eyepiece Micrometer. — This is a finely divided scale
ruled on thin glass placed in the focal plane of a microscope. The
eyepiece micrometer is standardized as follows: Adjust the posi-
tion of the ocular till the lines on the glass scale are distinet.
Thereafter, the position of the ocular with respect to the glass scale
must not be changed. Move the microscope up toward a standard
scale till the image of the latter is sharp. Noting the number of
divisions of the eyepiece scale that correspond to a given number of
divisions of the standard scale, the value of a single division of the
eyepiece scale is determined. This value will hold only when the
object distance is the same as when the instrument was stand-
ardized. But if the distance between the ocular and eyepiece scale
be fixed, the object distance will be the same whenever the object
is in sharp focus.

13. The Vernier Scale. — Vernier’s scale is a device for the
estimation of fractions of the smallest divisions of a scale. It
consists of a short auxiliary scale, called the ‘vernier,” capable of
sliding along the edge of the principal scale. The precision attain-
able with the vernier scale is about three times that attainable with
the unaided eye.

Usually, the vernior is divided so that n divisions of the vernier
correspond to (n — 1) divisions of the main scale. In some ver-
_niers, however, n divisions of the vernier equal one less than some
multiple of » divisions of the main scale. In either case, one nth
of the length of a division of the main scale is called the least count
of the vernier, where n represents the number of spaces into which
the vernier is divided.

Thus, in the case of a vernier divided so that n spaces of the
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vernier correspond to (n — 1) spaces on the main scale, if s be the
length of the smallest spaces on the main scale, and v the length of
the shortest divisions on the vernier,

n=mn-—1)s,
or, the least count,
s

S=8— 0 3)

The theory of the vernier may be made clear by the following example:
Suppose that along a meter stick there slides a vernier 9 mm. long divided
into ten equal parts. Each division on the vernier is then 0.9 mm. long, and
if the O-mark and the 10-mark of the

T | L T L vernier coincide with lines on the meter
1 '| & Il l I || T || y stick, then the 1-line on the vernier lacks

5 10 0.1 mm. of coinciding with a line on the

Fe. 5 meter stick, the 2-line lacks 0.2 mm. of
- coinciding with a line, the 3-line lacks
0.3 mm., and so on. If, then, the vernier were to be moved along 0.3 mm.,
its 0-line would be 0.3 mm. beyond some mark on the meter stick, and the
3-line would coincide with some mark; if the 7-line coincided with some
mark, the O-line would be 0.7 mm. beyond some mark, etc. The position
of the O-line is what is desired. In Fig. 5 the reading is 8.04 cm. ¢

In the case of a vernier divided so that n spaces of the vernier
equal one less than some multiple a of n spaces on the main scale
we have

I
v

Y mv=(an —1)s.

Whence, the least count is

=a8—0v 4

3%

In using any vernier scale we first bring the first and last lines
of the vernier into coincidence with lines of the main scale, and
then note the number of divisions in the given space as indicated
on the vernier scale and on the main scale. From this observation
we obtain the least count of the vernier. The least count multi-
plied by the number of the vernier line which coincides with a line
on the scale gives the distance between the O-line of the vernier
and the preceding line on the scale. In the case of a circular scale
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divided into thirds of a degree, the vernier is often made fifty-nine
thirds of a degree long and is divided into sixty equal parts. Its
least count is then one third of a minute. Fig. 6 shows such a
vernier, and also illustrates the manner in which verniers are often
numbered so that readings can be made directly without computa-
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tion. In this particular case, since each vernier division corre-
sponds to one third of a minute, it is natural to number the fifteenth
division 5, the thirtieth division 10, etc., minutes. The reading is
145° 50’ 0.

The Vernter Caliper (Fig. 7) consists of a finely divided steel
scale C with a fixed jaw at one end, and a jaw B provided with a

vernier scale D that can slide along the length of the scale. In
using this instrument the jaw B is nearly closed upon the object
to be measured, the screw E is tightened, and the final adjustment
carefully made with the screw F. The zero reading should always
be noted, and care should be taken that F is turned only until a
slight pressure is felt.
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14. The Cathetometer.—The cathetometer is an instrument for
measuring vertical distances in cases where a scale cannot be placed
very close to the points whose distance apart is desired. It con-
sists essentially of an accurately
graduated scale, Fig. 8, together
with a horizontal telescope capable
of being moved up and down a
rigid vertical column. The posi-
tion of the telescope can be read
off the scale by means of a ver-
nier. In measuring the vertical
distance between two points, the
instrument must first be adjusted
as described in the following para-
graphs. Then the cross hair in
the eyepiece of the horizontal tele-
scope is brought into coincidence
with the image of one point and
the position of the telescope noted;
the cross hair is then brought into
coincidence with the image of the
other point and the new position
of the telescope noted. The dif-
ference between these readings is
the vertical distance required.

Before taking a reading with a
cathetometer three adjustments
are necessary. The first adjust-
ment is to make the axis AB verti-
cal. To effect this, the telescope
is set approximately parallel to
the line connecting two of the
three leveling screws in the base,
and one or both of these two screws is turned until the bubble in L
is near the middle of the vial. The telescope is then rotated about
AB until it points in the opposite direction. If the bubble is not
still in the middle, it is brought back to the middle by turning one
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or both of the two screws, the number of turns being counted.
Half of that number of turns is then made in the opposite direction
and the bubble brought back to the middle of the vial by means
of the screw D. The telescope is then turned so as to be 90° from
its original position and the third screw in the base adjusted until
the bubble is in the middle. If the bubble does not now remain
in the middle of the vial, however the telescope may be turned
about AB, the entire adjustment is repeated.

The second adjustment is to make the axis of the telescope
horizontal. In doing this the telescope is taken from its wyes,
turned end for end, and replaced. If the bubble does not come to
rest at the middle of the vial, it is brought to the middle by the
screw D, the number of turns required being counted. Half this
number of turns is made in the opposite direction and the bubble
then brought to the middle by means of the screws at the ends of
the vial. The telescope is again reversed in the wyes, and if the
bubble does not still come to rest in the middle, the above opera-
tions are repeated.

The third adjustment is to focalize the telescope. The front
tube containing the eyepiece is moved in and out until the cross
hairs appear as distinct as possible. Then, while sighting along
the outside of the telescope, the latter is brought to about the
right height and turned so as to point approximately at the object
to be viewed. The eye is then placed at the eyepiece and the
focalizing screw F turned until the image of the object does not
move with reference to the cross hairs when the observer’s head is
moved slightly from side to side.

The cathetometer is now in adjustment. In finding the vertical
distance between two points, the telescope is focalized first on one
of the points and then on the other, the final setting being made in
each case by the screw E. After each setting the height of a mark
on the carriage is read by the vernier V. The difference between
the two readings gives the desired distance.

16. Amsler’s Planimeter. — A planimeter is a direct-reading
instrument used to determine the areas of irregular figures on
drawings. Amsler’s polar planimeter (Fig. 9) consists of two
arms, — a tracer arm AC, and a pole arm EC, — jointed at C.
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The point E is fixed and the point A is carried around the boundary
of the figure in the direction of the hands of a watch. Attached to

the tracer arm is a small roller
D, the axis of which is parallel
to the line AC. This roller and
the points A and E are the
only parts of the planimeter
that touch the paper. As the
point A passes over the bound-
ary of the figure, the roller ro-
tates unless the motion A is
entirely in the direction of AC
—in which case the roller
slides. It will now be proved
that when the tracing point
circumscribes any closed plane

figure which does not contain the pole point, the circumfer-

ence of the roller ro-
tates a distance pro-
portional to the area
circumscribed by the
tracing point. This
proof will be in four
parts.

First, consider two
concentric circular
arcs AA” and A’A"’
(Fig. 10) cut by radii
AEand A”E. Letthe
pole point of the plani-
meter be fixed at the
center ‘of these arcs,
and let the tracing
point be moved along
the radius AE from

A

Fia. 10.

A to A’. Then the roller will move from D to D’ while a point
in its circumference will rotate through the distance DH. Again,
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let the tracing point be moved along the radius A”E from A” to
A", causing the roller to move from D" to D’ while a point on
its circumference rotates through the distance D”’H’. Since the
shape and size of the figure ED'HDA’A are the same whether
the tracing point has moved along the radius AE or along some
other radius A”E, it follows that D"’H’ equals DH. Therefore,
while the tracing point passes over the portions of any radii inter-
cepted between the same two circles having the pole point E as
center, the rolling components of the motion of the roller are equal.

Second, let ECA (Fig. 11) represent the planimeter in one posi-
tion, and EC’A’ the planimeter in another position. Draw EB
and JD normal to AC, and HD'
normal to JD; also draw EA, ED,
and ED’. For brevity let 5; denote
the distance through which a point
in the circumference of the roller
moves with reference to AC when
A describes any line z.

Let the instrument start from the
position ECA, and, keeping the
angle ECA constant, rotate about
E through a small angle A® into
the new position EC'A’. AA’is,
then, the arc of a circle described Fia. 11.
about E as center. The roller,
meantime, moves through a small distance DD’, sliding through a
distance HD’, and rolling through a distance DH. Whence,

644'= DH = DD’ - cos HDD' = ED - A® - cos HDD'.  (5)

Since HD is by construction normal to AC, and the very small arc
DD’ is normal to the radius ED, the angle HDD’ equals the angle
BDE. And since BE is by construction normal to BD,

cos HDD' [= cos BDE] = %-

Equation (5) becomes, therefore,

BD
344'=ED-A8'ETD-=AQ-BD. (6)
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Now BD = BC — DC = EC - cos ACE — DC. )]
And since in the triangle ACE,
(AE)? = (AC)* + (EC)! — 2AC-EC-cos ACE,
(7) may be written
(AC) + (EC)* — (AE)®
2A4C-EC
Equation (6) becomes, therefore,

(AC)* + (EC)* — (AE)?
2AC == DC]'

BD = EC -

— DC.

da4r= AB [ (8)

For this particular case, then, where the tracing point moves
over the very small arc of a circle described about the pole point,
544’ is expressed in terms of the
radius of this circle, the dimen-
sions of the instrument, and the
very small angle subtended by
the given arc.

Third, let any figure KLMN
(Fig. 12), not inclosing the pole
point, be cut into a large number
of very narrow strips by a series
of circles having E for center.
Let these strips be cut into very
small areas by radii drawn from
E. Thus the entire figure is
divided into a great number of
areas, each as small as we choose.
If the tracing point circumscribes
in the clockwise direction one of these small areas, ab’, we have,
from the first division of this proof,

Op' = —0a'a.

And since 84 is described in the opposite direction from that
assumed in the second division of this proof, the entire value of
Sapv'a'a 1S €qual to dper — 8. Whence, by (8), s
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b = 20 A+ BN = @Y _ ]
(AC)* + (EC)* — (aE)
- A@[ 2 AC - DC]

=29 l(aBy ~ (@EY.

But 3 A8 (aE)* = § A® (aE) (aE) = } (ab) (aE),
and this last expression measures the area of the circular sector
abE. In the same way 3 A@® (a’E)? measures the area of the circu-
lar sector a'b’E. So that

_ area (abE) — area (a’b’E) _ area (ab’) .

dabb'a’a AC = AC (9)

In Fig. 11 the angle BDE was acute. If this angle be obtuse, it
will be seen that the roller then rotates in the opposite direction.
Calling rotation in this opposite direction negative, and making the
changes in sign involved in the new figure, we find that (9) holds
whether BDE is acute or obtuse. That is, when the elementary
area ab’ is circumscribed by the tracing point, that area is given
by the product of the length of the tracer arm and the small dis-
tance through which a point in the circumference of the roller has
rotated.

Fourth, let the tracing point move over the whole figure KLMN
(Fig. 12) in such a way as to traverse the boundary once in a clock-
wise direction, and each of the radial lines and circular arcs twice,
once in each direction. By taking lines in the proper order, this
can be done without lifting the tracing point from the paper. De-
seribing these lines in the manner indicated amounts to the same
thing as going once in the clockwise direction around the whole
figure; it also amounts to the same thing as going once in the clock-
wise direction around each of the small areas into which the figure
is divided. The total value of §, will then be

5 _ < area (ab’) _ area (KLMN)
KLMNK = AC = AC *

This equation shows that when an area which does not contain the
pole point is circumscribed by the tracing point, the area is measured

(10)
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by the product of the length of the tracer arm and the distance through
which a point in the circumference of the roller has rotated with refer-
ence to the tracer arm.

The dimensions of the planimeter are usually so selected that
the product of the length of the tracer arm by the circumference
of the roller is equal to ten square inches or a hundred square centi-
meters. That is, they are so selected that if the tracing point
circumscribes an area of ten square inches or a hundred square
centimeters, as the case may be, the roller rotates once. The cir-
cumference of the roller is then divided into a hundred equal parts,
and these by means of a vernier (V, Fig. 9) can be read to tenths.
The counting wheel B indicates
the whole number of revolutions
of the roller.

In the practical use of a plani-
meter, the figure the area of which
is desired may be so large that it
cannot be circumscribed without
placing the pole point inside it.
In this case the area may be de-
termined as follows:

If the angle ADE (Fig. 11) is a
right angle, then BD is zero, and,
therefore, from (6), d44’ equals zero. That is, as A moves about
E in the circular arc AA’, the roller slides, without rolling at all.
The circle generated by the tracing point A about the pole point E
as center when the roller does not rotate, and so makes no record,
is called the “zero ” or “datum ” circle.

In Fig. 13, let RSW be this datum circle. Then if the tracing
point were to circumscribe the area T'S, (9) shows that

drusrr = %’ ' (11)

Fia. 13.

and if now the tracing point were to circumscribe the rest of the
shaded area, then

h
SrRwSUVT = > aded azega. UVT), (12)
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If these two paths were to be described successively, then, by
adding (11) and (12), we find that .

total shaded area
STUSRTRWSUVT = AC .

In tracing this whole path, the lines US and RT have each been
described twice, once in each direction, so that the resultant motion
of the roller produced by tracing them is zero, and, since RSW is
the datum circle, the roller did not rotate while it was traced. It
follows that if the tracing point had simply described the perim-
eter TUVT, the roller would in the end have turned from its first
position just as much as it did while the more complicated outline
was being traced. That is, if the tracing point were to describe
the entire perimeter of the figure, the area indicated by the roller
would be the area of that part.of the figure outside of the datum
circle. If the tracing point were ever to cross the boundary of
the datum circle, the roller would move in opposite directions be-
fore and after crossing. From this it may be shown, if proper at-
tention be paid to the sign of the roller reading, that whenever the
pole point is inside of the figure circumscribed by the tracing point, the
area actually circumscribed is greater than that indicated by the roller,
the difference being the area of the datum circle.

To sum up, #f the tracing point circumscribe in the clockwise
direction any area, the difference between the final and initial readings
of the roller gives the area when the pole point lies outside the figure;
when the pole point lies inside the figure, the area is obtained by add-
ing to this difference the area of the datum circle.

16. The Beam Balance. — One of the most common as well
as the most accurate methods for the comparison of masses is
afforded by the beam balance (Fig. 14). The beam BB’ can ro-
tate about a knife edge K; which rests upon an agate plate. Sus-
pended from knife edges at K, and K, are the scale pans p; and p,.
A handle H operates an arrestment consisting of a horizontal rod
and three cams C,, C,, and C;, by means of which the knife edges
may be relieved of the weight of the beam and pans when the
balance is not in use and when the masses in the pans are being
changed. Fastened to the beam is a long pointer I which swings
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in front of a graduated scale S. Whether the divisions on this
scale are numbered or not, it is convenient to assume that the
middle division is numbered 10, and that the divisions are num-
bered from left to right. Projecting from the side of the case is a
rod R by means of which a bent aluminium wire called a rider can
be placed at any point along the beam. This rider is used in place
of standard masses smaller than 10 mg. The top of the beam is
often divided into twenty equal parts, the O-line being over the
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central knife edge, and the 10-lines over the other knife edges. If
the mass of the rider is 10 mg., and it is placed on one of the 10-
lines, it produces the same effect as if a 10 mg. mass were in the
corresponding pan; but if it is placed at division 3, it has a turning
moment only three-tenths as great, and so produces the same
effect as would a 3 mg. mass placed in the pan. Occasionally
a rider of some other mass is used and the beam divided ac-
cordingly.

17. The Method of Vibrations. — This is the method usually
employed in making accurate weighings. When using this method,
the balance case is at first left closed and the arrestment released.
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If the pointer does not begin to swing, the case is opened, the hand
waved lightly over one pan, and the case again closed. With the
pointer swinging in front of the scale, but not beyond it, the zero
point of the balance is determined; i.e., the point at which the
pointer would finally come to rest, either with no load on the pans,
or with equal loads on the two pans.

This is done by observing an odd number of successive turning
points of the pointer. As the pointer swings, the distance between
any two successive turning points on the same side of the scale
gradually decreases, but in a few swings
the decrease is slight. The zero point is
about halfway from b (Fig. 15) to a point -
midway between a and ¢. It is also about >5
halfway from c to a point midway between ¢
b and d; about halfway from d to a point >d
midway between ¢ and e; etc. Since the
distance from a to c is about the same as I~
that from c to e, the average of a, ¢, and e is \ :
nearly the same as ¢. The zero point, Fia. 15.
then, is very near the point found by

taking the average of g, ¢, and ¢, and averaging with it the average
of b and d.

Suppose, for instance, that five successive turning points are observed to
be:

AR

8.4 11.9

8.5
87 11.8

Then the average of the turning points at the left is 8.53 and of the turning 4
points at the right is 11.85. Consequently the zero point is in the neighbor-
hood of [} (8.53 + 11.85) = ]110.2.

Five successive turning points are usually enough to observe.
But any odd number of successive turning points may be used in
the same way ; viz., by averaging the left turning points and averag-
ing the right turning points, and then finding the average of the
two results. It should be noted that this method of finding the
zero point is most accurate when the pointer swings with a small
amplitude. Since the zero point varies from day to day, and even
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from hour to hour, it should be determined for each experiment.
For very accurate work it should be determined both at the be-
ginning and at the end of a weighing, and the average value used.

After the zero point has been determined and while the arrest-
ment is elevated so as to lift the beam off the knife edge, the object
is placed on one pan and standard masses on the other. Right-
handed persons find it most convenient to place the object on the
left pan so that the mass pan is in front of the hand that makes the
adjustment of the standards. Each time that a new mass is placed
on the pan the arrestment is lowered just enough to see in which
direction the pointer would swing, but no masses are ever put on
or taken off while the pointer is free to swing. When the masses
are so nearly adjusted that if the arrestment is entirely re-
leased the pointer swings back and forth near the zero point, the
position at which the pointer would finally come to rest is deter-
mined from several successive turning points in the same way that
the zero point had been. The rider is then moved so as to alter
the effective mass on the mass pan by one or two milligrams, and
the new position of rest determined. From these observations
the mass which would be required to make the point of rest coin-
cide with the zero point can be calculated without taking the time
to effect the balance experimentally.

Suppose, for example, that the zero point of the balance is 10.2 scale divi-
sions, and that with the object on the left pan and a mass of 24.166 g. on the
right pan, the point of rest is found to be 11.6 scale divisions. Since this
point of rest is to the right of the zero point, the mass on the right pan is too
small. Suppose that by means of the rider the effective mass on the right
pan is increased by 2 mg., and that the new point of rest, determined as be-
fore, is found to be 7.4 scale divisions. Then the addition of 2 mg. has moved
the point of rest through [11.6 — 7.4 =] 4.2 scale divisions, and 1 mg. would
have moved it 2.1 scale divisions. It follows that the mass which would
have to be added in order to move the point of rest through the [11.6 — 10.2 =]
1.4 scale divisions to the zero point of the balance is (1.4 + 2.1 =] 0.7 mg.
Consequently the apparent * mass of the object is [24.166 + 0.0007 =]}
24.1667 g.

18. Sensitivity. — The sensitivity of a balance is defined as
the number of scale divisions through which the point of rest is"

* See below, Errors in Weighing.



SENSITIVITY 29

moved by the addition of one milligram to the load on one of the
pans. In the above example the sensitivity was 2.1 scale divisions
per milligram. The sensitivity, however, depends upon the load
and should therefore be determined for each weighing. The fact
that it depends upon the load may be shown as follows:

Let K,, K,, K; (Fig. 16) denote the three knife edges of the
balance, and M the center of mass of the beam. Let p; and p;
be the respective masses of the left and right pans, and M; the mass
of the beam. - Suppose that with a mass M, on the left pan and a
mass M; on the right pan the beam comes to rest in the position

U]

— \, lan@+B

(M,+B)g
Qf,+P)g

M, ¢
Fia. 16.

-indicated. Then, since the balance is in equilibrium, the sum of
the moments of (M, + p1) g, (M2 + p2) g, and M;g taken about
K; must equal zero, 7.e.,

(My+ p1) g X Lisin (6, — B) S
— (Mz:+ p2) g X bsin (62 4+ B) — Mg X rsing =0,

or (M, 4+ p1) L (sin 6; cos 8 — cos 6, sin §)
— (M + p;) Ly (sin 6, cos B + cos 8; sin §)
— Marsing =0. . (13)

Since in the actual case 8 is always small, we may replace sin 8 by
B,and cos by 1. Theniflb =1 =1,if 6, = 6, = 6, and if ps =
P = p, we have

(M1 +p) I (sind — B cos )
' — (M3 + p) l(sin § + B cos 6) — Marf = 0.
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Whence, .

B . Ising
M1 -M, - (M1+M2+2p)lCOSG+M3T

(14)

If M, — M, = 0, then 8 = 0; and if M; — M, = 1 mg., then the
left member of (14) denotes the movement of the pointer for 1 mg.
change in the load. That is, the sensitivity of the balance is pro-
portional to each member of this equation.

If 6 be 90° cos @ is zero, and whatever the value of the load,
M, + M,, the right member of (14) is unaltered. That is, when
0 is 90°, the sensitivity is independent of the load. If @ be less
than 90° cos @ is positive, and as the load, M; + M, increases,
the right member of (14) decreases. That is, when 6 is less than
90°, the sensitivity decreases as the load increases. If 8 be larger
than 90° cos 6 is negative. It follows that as M, + M. increases,
the denominator of the right member of (14) decreases, and the
sensitivity therefore increases. That is, when 6 is larger than 90°,
the sensitivity increases as the load increases. Since different
loads necessarily bend the beam different amounts, it follows that
the sensitivity is different for different loads. The maker usually
arranges to have the three knife edges in line when the balance has
about half its maximum load.

19. Errors in Weighing. — The errors to which a weighing is
especially liable are due to (a) the buoyant effect of the air, (b)
errors in the standard masses, (c¢) difference in the lengths of
the balance arms, and (d) difference in the masses of the scale
pans.

(a) The buoyant effect of the air will be different upon the bodies
on the two scale pans unless their volumes are equal. The true
mass may be found as follows: Let M, D, and V denote respectively
the mass, density, and volume of the body the mass of which is
desired, and m, d, and v, the mass, density, and volume of the
standard masses which just balance it in air of density p. Then
the difference between the weight of the body in vacuum and its
weight in air is equal to the weight of the air displaced pVg, and
the weight of the body in air is consequently Mg — pVg. In the
same manner, the standard masses when in air weigh mg — pvg.
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Since the weight of the body in air equals the weight of the standard
masses in air,
Mg — pVg = mg — pvg,

M
or Mg — ppy9=mg — p%zg,
PN _ ™
so that M (1 D) m—p (15)

(c) and (d). Errors due to difference in the lengths of the balance
arms and to difference in the masses of the scale pans can be nearly
eliminated by weighing the body first in one pan and then in the
other. This is called the Method of Double Weighing and will
now be explained.

Let I, and &, denote the respective lengths of the left and right
arms of the balance, and p; and p. the respective masses of the left
and right pans. If an object of mass M is balanced by standard
masses m; when the object is in the right pan; and by standard
masses me when the object is in the left pan, then in Fig. 16,3 = 0.
If, in addition, 8, = 6,, we have from the principle of moments,

m+m)h=@+MLik (16)
and m+MhL=(p -+ m)db. 17)

If the pointer swings near the middle of the scale with no load on
the pans, we have also pil, = p.l, so that (I6) and (17) become

mlll = M lg
and Ml = mal,.
Whence, M = Vmm,. (18)

In case of a balance in ordinary adjustment m, will so nearly equal
m; that we may use approximation (7), p. 7, and in place of
(18) write

M =3 (mi + myp). (19)

20. Precautions in the Use of a Balance. —
1. Do not place on the pans anything wet, any mercury, nor
anything that might injure the pans.
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2. Never change the masses on the pans nor move the rider
when the beam is free to swing.

3. Never touch any standard masses with the fingers — use
forceps.

4. Keep all standard masses in the proper compartments in the
box when not actually in use upon the balance pan.

5. Never raise nor lower the arrestment so quickly as to cause
any jerk.

6. When not actually altering masses keep the case closed.

7. Before leaving the balance bring the arrestment into play so
that the beam is not free to swing, set the rider at the zero mark,
dust off the pans and the floor of the case with a camel’s-hair
brush, and close the case. .

21. Density and Specific Gravity. —If a body of mass m occu-
pies a volume v, then the average density of the body is given by

m
= (20)

From this expression it is seen that the number which expresses
a density depends upon the units in terms of which the mass and
volume are measured. For example, at 4° C. the density of lead
is about 708 pounds per cubic foot, or 2868 grains per cubic inch,
or 11.34 grams per cubic centimeter. Since density is a concrete
quantity, the units in terms of which the mass and volume of the
body are measured must always be stated. Since most bodies
change their volume somewhat with changes of temperature, the
density of a substance depends upon its temperature; and so in
accurate work the temperature at which a determination is made
should always be stated.

The specific gravity or relative density of a substance is the ratio
of its density to the density of some standard substance. In other
words, the specific gravity of a body is the ratio of its mass to that
of an equal volume of a standard substance. Specific gravity is
thus a numerical ratio, an abstract number which is independent
of the units employed. For solids and liquids, water at the tem-
perature of its maximum density (4° C. or 39° F.) is arbitrarily
taken as the standard substance.
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[ Since in the c.a.s. system of units the unit of mass is the mass
of a unit volume of water at the temperature of its maximum
density, it follows that the density of a body in grams per cubic
centimeter is numerically equal to its specific gravity.

22. Friction. — If a body resting upon another be acted upon
by a force parallel to the surface separating them, the body will
not start to move until this force has reached a certain definite
value. Moreover, the force F, which is necessary to start the
body is directly proportional to the force F, which presses the two -
surfaces together. That is, F, = uF,, in which the constant u is
called the coefficient of static friction. When the body does start
to move, the force which is required to keep it moving uniformly is
somewhat less than the force that is needed to start it. And this
force F,’ which is necessary to keep the body moving uniformly is
also directly proportional to the force F, which presses the two
surfaces together. That is, F,' = bF,, in which the constant b is
called the coefficient of kinetic friction. Since F, is greater than
" F,', uis greater than b.

23. Moment -of Inertia. — If a torque be applied to a body,
there will be produced an angular acceleration of its motion pro-
portional to the torque applied. That is,

a= %) (21)

where L is the torque, 7.e., the moment of the applied force about
the axis of rotation, and K is a function of the mass and distribu-
tion of the particles composing the body called the ‘ moment of
inertia ”’ of the body with respect to the axis of rotation. The
moment of inertia of a rigid body with respect to a given axis is that
property of the body which requires a torque to change the angular
velocity of the body.

The moment of inertia of a body can be shown to be numerically
equal to the sum of the products of the masses of the particles
composing the body and the squares of their respective distances
from the axis of rotation, <.e.,

K= zmr’. (22)
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The moment of inertia of a body of simple geometric form can
be computed, but the moment of inertia of an irregularly shaped
body may often be determined most easily by experiment. The
experimental determination is usually made by comparison with
a body whose moment of inertia can be computed. For such
comparisons cylinders and rings of known dimensions are con-
venient.

The moment of inertia of a uniform right solid cylinder of mass
M and diameter d, about its geometric axis is

1 Mae. (23)

About any axis parallel to the geometric axis and distant p from it,
the moment of inertia is

} M + Mp*, 24)

If the cylinder have a length I, the moment of inertia about an
axis through the center and normal to the length is

@ P .

M [E + 1—2] (@25)
while about an axis coinciding with the diameter of one end, the
moment of inertia of the cylinder is

a  n
M [ﬂi + g‘] . (26)
The moment of inertia of a ring or right hollow circular cylinder
of outer diameter d, and inner dlameter di, with respect to the

geometric axis, is
M (@dz2+ d?). @27

24. Elasticity. — When a body is perfectly elastic, a given
deforming force keeps it distorted to the same extent no matter for
how long a time the force is applied. This means that the dis-
tortion calls into play a restoring force which, so long as the body
is at rest, is exactly equal and opposite to the deforming force. It
follows that, when the deforming force is removed, this restoring
~force causes the body completely to recover its original shape
and size. When a body is imperfectly elastic, a given deform-
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ing force produces a gradual yielding so that the restoring force
which the distortion calls into play is in this case not quite equal
to the deforming force. It follows that when the deforming force
is removed from a body which is imperfectly elastic, the body does
not completely recover its original shape and size. It is said to
have received a permanent set, or to have been deformed beyond
its elastic limit. So long as any body is not deformed beyond its
elastic limit it is perfectly elastic.

The ratio of a force to the area on which it acts is called a
stress. The ratio of a deformation to the original value of the
length, volume, or whatever has been deformed, is called a strain.
When a body has not passed its elastic limit, the ratio of the
restoring stress to the strain which produced it is constant and is
called a coefficient of elasticity.

If a wire is stretched or a pillar shortened by a load applied
to it, the strain is the change of length divided by the original
length. In this case the ratio of the stress to the strain is called
the tensile coefficient of elasticity or Young’s modulus. That is,
force of restitution
area of cross section (28)

elongation
original length

Young’s modulus =

If a toy balloon were fastened under water and then pressure
applied fo the water, the balloon would decrease in volume with-
out changing its shape. In this

case the strain is the change in =—
volume divided by the original 7 |* AN b
volume, and the corresponding \ N
coefficient of elasticity is called \\ 4 N\ .
the bulk modulus.

If a rectangular parallelopiped Fia. 17. .

of rubber ac (Fig. 17) has two

opposite faces glued to two boards, and if one of these boards is
pushed sideways in its own plane, there is no change in the volume
of the block but its shape 1s changed to fged. In this case the
strain is the ratio of af to ad, and is called a shear or a shearing
strain. If F is the force applied, and A the area of the face ab,

T a
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then F divided by A is called a shearing stress. If the block of
‘rubber is very thin in a direction normal to the paper, and if
it is bent around until ad coincides with bec, it is seen that a
ghear is the kind of strain involved in the twisting of a wire about
its geometric axis. The ratio of a shearing stress to the shearing
" strain which it produces is called the simple rigidity or the slide
modulus of the material sheared.’

26. Viscosity. — When a fluid flows along a solid surface, the
layer of fluid adjacent to the solid surface is, on account of co-
hesion, at rest, and the speed of the other layers is greater, the
greater their distance from the solid. As a result of this difference
in the speed of the successive layers, the more slowly moving layer
tends to retard the more quickly moving layer and is itself acceler-
ated by the action of this layer. The property of a material fluid
by which time is required for friction to produce a change in the
relative motion of its parts is called viscosity.

In an elastic solid a shearing stress produces a shearing strain,
and this strain, in turn, produces a restoring stress. If the body
be subject to a given stress that is not beyond its elastic limit, the
strain does not change with the lapse of time, and the ratio of the
stress to the strain is a coefficient of elasticity.

_ In a fluid a shearing stress produces a shearing strain, and with

the strain there is developed a stress that opposes the distortion
but does not tend to restore the fluid to any former shape. In
fact, any shearing stress, however slight, produces a continuously
increasing strain, and the ratio of the shearing stress to the shearing
strain thereby developed per unit time is called the coefficient of
viscosity of the fluid.

Consider two parallel layers of fluid # cm. apart, one moving
with a speed s, and the other with a smaller speed s, in the same
direction. Since there is no abrupt change of velocity in passing
from one layer to the other, the speed of the intervening layers
varies uniformly between these values, and the change of speed
per unit distance, normal to the direction of motion, equals -
(s:'— 8)/z. This quantity is called the “velocity gradient,” and
is denoted by the symbol s'.

Now the fluid on one side of a specified layer moves more
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rapidly than the layer, while the fluid on the other side moves more
slowly. Thus, the more rapidly moving fluid is acted upon by a
retarding force, and the more slowly moving fluid by an accelerat-
ing force. If either of these forces be denoted by F and the area
of the slipping surface by A, then the shearing stress is F/A
(Art. 24), and the strain produced in unit time is (s; — sp)/z.
Consequently the coefficient of viscosity of the fluid is

: L S v ()
That is, the coefficient of viscosity equals the tangential force per
unit area per unit velocity gradient.

Exp. 1. Study of the Vernier

THEORY OF THE EXPERIMENT. — Read Art. 13.

MaNIPULATION. — For each of several assigned instruments
note the value in centimeters, inches, or degrees, as the case may
be, of the smallest divisions on the main scale. Bring the zero line
of the vernier into coincidence with a line of the main scale and
note the number of divisions on the main scale that are included
between the zero line of the vernier and the last line. From this
result find the value of a vernier division in terms of a division
on the main scale, and then, the least count of the vernier by (3)
or (4).

Set the vernier at random and make a sketch of the vernier and
scale as in Fig. 5 or 6. Designate the value of the scale division
on either side of the zero of the vernier, and also the vernier division
that coincides with a division on the main scale. Below the sketch
record (@), the number of divisions on the vernier, (b), the least
count of the vernier, (c), the vernier reading of the instrument as
arranged in the sketch.

Exp. 2. Study of the Sensitivity of a Balance

THEORY OF THE ExPERIMENT. — Read Arts. 16 and 18, Fig. 18
represents a balance beam consisting of the frame that carries the
three knife edges together with the pointer and bob. The pointer
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is perpendicular to the line joining the end knife edges. The
distance [ from the fulcrum to either of the end knife edges is
called an arm. We shall limit our consideration to a balance with
equal arms. Call the angle between the pointer and either arm,
0; the distance from the center of mass of the beam to the fulecrum,
r; the mass of each pan, p; the load on the left pan, M,;

Tstmf=X
Q ,n'7 7 loos0 =<
8

L.

Fia. 18.

the load in the right pan, M,; the mass of the beam, M;; and
represent the angular deflection produced by a difference of load
M, — M, by B.

Since the distance A& from the fulcrum to the line joining the
end knife edge equals I cos 6, and the perpendicular distance z
from one of the end knife edges to the pointer equals ! sin 6, the
sensitivity of an equal arm balance having pans of equal mass is,
by (14), .

MI_M2= M1+ Mz 2p) h+ Myr

(30)

It should be noted that when 6 is less than 90°, h (= I cos §) is
positive; when @ is 90°, o = 0; when 6 is more than 90° & is
negative.

An inspection of the above equation shows that with the center
of mass of the beam fixed with respect to the beam,

(a), if the end knife edges are below the fulcrum, the sensitivity
decreases when the mass of the pans, of the loads on the pans, or
of the beam, is increased;
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(b), if the three knife edges are in line, the sensitivity is inde-
pendent of the masses of pans or loads on them;

(c), if the end knife edges are above the fulcrum, the sensitivity
increases when the load increases.

Also, for a given load on the pans, the sensitivity may be in-
creased by:

(d), increasing the perpendicular distance from the end knife
edge to the pointer;

(e), lowering the central knife edge relative to the line joining
the end knife edges;

(f), decreasing the distance r between the center of mass and
the fulerum; '

(9), decreasing the mass of the beam M; or the mass p of the
pans.

The object of this experiment is to measure the sensitivity of a
model balance and also compute it by means of the above equation,
(a), when the position of the center of mass of the beam is changed,
the other factors remaining constant; (b), when its loads in the
pans are changed while the fulerum is below, in line with, and
above, the end knife edges.

MANIPULATION. — The model balance used in this experiment
is shown in Fig. 19. The beam consists of a meter bar provided
with collars X and Y, each carrying three knife edges aj, by, ¢, as,
by, and ¢;. The fulerum Kj; is in line with knife edges b, and b,.
By hanging the pans on the proper knife edges, the fulerum may
be below, in line with, or above the end knife edges.

For the purpose of finding the center of mass of the beam, the
plate which supports the fulcrum Kj is provided with a knife edge
K, on which the beam can be balanced. Since the beam is sym-
metrical about the pointer, and the bob B is of greater mass than
the remaining parts, the center of mass lies in the axis of the
pointer. By moving the bob along the pointer the center of
mass can be made to coincide with the center of the groove
P, Q, or R.

See that the fulcrum is midway between the two end knife
edges. With the pans removed, place the groove P on the knife
edge K, and adjust the position of the bob until the beam balances.
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The center of mass'is now at P. In balancing the beam on K., care
must be taken that the beam does not fall.

Replace the beam on the fulerum K3, and suspend the pans from
a, and a;. With the pans empty, place 10 gm. on one pan and
note the point of rest. Place the 10 gm. on the other pan and

note the new point of rest. Half the-difference between these two
readings, divided by 10, equals the sensitivity for zero load, ex-
pressed in radians per gram. In the same manner, find the sensi-
tivity for loads of 200 gm., and for 500 gm.

- Suspend the scale pans from b; and b;, and find the sensitivity
for loads of 0, 200, and 500 gm.

Suspend the scale pans from ¢, and ¢, and find the sensitivity
for loads of 0, 200, and 500 gm.

Now clamp the bob at the place that causes the center of mass
of the beam to be at @, suspend the pans from b, and b,, and find
the sensitivity for a load of 200 gm.

Finally, clamp the bob at the place that causes the center of
mass of the beam to be at R, suspend the pans from b, and b., and
find the sensitivity for a load of 200 gm.
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With another balance find the mass M; of the beam, and the
mass p of each pan. Measure the distance z from the fulcrum to
the axis of the rods supporting the end knife edges, the distance h
between adjacent end knife edges, and the distance r from the
fulecrum to the centers of mass P, @, and R. Substituting these
values in (30), compute the sensitivity for each case that has been
experimentally found. These sensitivities will be expressed in
radians per gram.

The data of the experiment may be conveniently tabulated as
follows: ‘

p=....gm z= . cm.
M;= ....gm. h = . cm.
Length of one scale division = ....ecm. 7rp= ....cm.
Length of the pointer =....cm. rg= ..cm.
TR = . CIn.

X Sensitivity

Position of end knife -Point Point | Deflec-
edges r My =M | rest [Mi=Msf of rest | tion
Obs. | Cale.

Below fulcrum ..em. ..gm. | .... (10gm.| ....

Exp. 3. Determination of the Mass of a Body from a Weighing
Reduced to Vacuo

TueoRY OF THE EXPERIMENT. — Read Arts. 16, 17, 19, 20, and
21. Masses are usually compared by weighing on an equal arm
balance with standard masses made of brass. Two masses on the
pans of an equal arm balance will have the same apparent weight
when the resultant downward force on one is equal to that on
the other. Since this resultant downward force is the difference
between the weight of the body and the buoyant force of the air
acting upward, and since from Archimedes’ Principle, the buoyant
force equals the weight of air displaced by the body, it follows that
two bodies of the same mass will balance one another in air only
if they be of the same volume. A weighing made in air, therefore,
is subject to an error due to the buoyancy of the air. This error
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is quite appreciable when the density of the body differs much
from the density of the standard masses employed. For example,
in weighing a quantity of water with standard masses made of
brass, the error due to buoyancy of air amounts to about 1.06
milligram for every gram, or to about one-tenth of one per cent.

The object of this experiment is to weigh in air two bodies of
different but known densities, and compute the weights that would
have been obtained if the weighings had been performed in vacuo.

ManipuLaTION. — Weigh each body by the Method of Vibra-
tions, first on one pan of the balance, and then on the other.
Record all observations, including the turning points of the
pointer. Compute the apparent mass m of each body by means
of (19), using sufficient figures to express the result to tenths of a
milligram. Knowing the density D of the body under test, that
of air p, and that of the brass standard masses d, together with the
true mass m of the standards when the balance is in equilibrium,
the true mass of the object M may be computed from (15).

In making the calculations above indicated, the precision of the
result will depend largely upon the number of figures used to
express the ratios of the densities in (15).

Problem. — Compute the true mass of a piece of cork (D = 0.24 gm. per cc.)
which is balanced in air (p = 0.0012 gm. per cc.) by standard masses amounting

to m = 50.8654 gm. made of brass of density d = 8.47 gm. per cc.
Solution. — Substituting these data in (15)

0.0012 0.0012 X 50.8654’

M(l——024) 50.8654 — S a7

M (1 —0.0050) = 50.8654 — 0.0072,
M = 51.1138 gm.

Exp. 4. Determination of the Density of a Solid by Measure-
ment and Weighing

TaEORY OF THE EXPERIMENT. — Read Arts. 11, 13, 17, 20, 21.
From (20) it will be seen that the density of any solid could readily
be determined if a specimen of it could be obtained in a shape
such that its volume could easily be computed.

ManipurLATION. — The specimen to be used is a cylinder.
Measure its diameter with a micrometer caliper and its length
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with a vernier caliper and calculate the volume. Determine the
mass by weighing, using the method of vibrations. In order to
get a very accurate value for the density it would be necessary to
correct the weighing by allowing for the buoyancy of the air in the
manner described in Exp. 3. .
First, without making this correction, divide the apparent mass
of the specimen by the volume. This gives an approximate value
for the density. If a more precise value is required, use this

approximate value in (15) to get the corrected mass of the cylinder,
and then calculate the density by (20).

Fia. 20. Fia. 21. Fia. 22.

Exp. 5. Determination of the Density and Specific Gravity of
a Liquid with a Pyknometer

THEORY OF THE ExPERIMENT. — Read Arts. 16, 17, 20, and 21.
The pyknometer is essentially a small glass vessel of definite
volume. Various forms suitable for determining the densities of
liquid are given in Figs. 20-24.

The pyknometers in Figs. 21 and 24 can be used only for liquids,



44 FUNDAMENTAL MEASUREMENTS

while the others can be used for either liquids or solids. The most
common form, that shown in Fig. 22, consists of a small bottle
fitted with a perforated glass stopper that always comes accurately
to a seat at the same point, so that the volume of the bottle is
definite when the stopper is in place. This form
is often called a specific gravity bottle.

The volume of the pyknometer is obtained
from two weighings, first when empty, and
second when filled with a liquid of known
density, e.g., water. If the mass of water con-
tained in the filled pyknometer is denoted by W
and its density by p,, then the volume is

w

Pw

Fic. 24.

Now let the water be replaced by the specimen.
If the mass of this second liquid filling the pyknometer be denoted
by s and its density by p,, then

p.,[= §]=%"- 31)

Denoting the maximum density of water by &, we have for the
specific gravity of the specimen,

Sp. Gr. [= %] - 2. (32)

In the preceding equations no account has been taken of the
buoyant effect of the atmosphere on the liquids being weighed
nor on the standard masses used in the weighing. In precise
determinations this source of error cannot be neglected. The
true weight of an object equals its apparent weight plus the weight
of air displaced by it. And when the balance is in equilibrium,
the apparent weight of the body equals the apparent weight of
the standard masses. So that when the specimen is weighed in
air, its true weight minus its loss of weight due to the buoyancy
of the air equals the true weight of the standard masses minus
their loss in weight. If the density of air be denoted by p, and the

-~



DENSITY AND SPECIFIC GRAVITY OF A SOLID 45
density of the standard masses by ps, this last statement says that
when the pyknometer was filled with the first liquid,

WPa ,
Pb

Vo — Vo, =W —
and when the pyknometer was filed with the second liquid,

S
')P:—')Pa=8——£2'
. Pb

On eliminating » from these equations, we obtain

paf‘%ﬁ"‘l’a-

ManipuLATION. — Weighing by the method of vibrations, de-
termine first the mass p of the empty pyknometer; second, the
mass (p + W) of the pyknometer filled with recently boiled dis-
tilled water; and, third, the mass (p + s) of the pyknomeger filled
with the liquid in question. Take the values of p, and p, from
tables. '

Each time before filling the pyknometer, clean it by rinsing
successively with nitric acid, distilled water, and alcohol, and
then dry it by putting into it the end of a tube connected to an
exhaust pump. Be sure that there are no air bubbles in the
pyknometer, that the outside is dry, that the stopper is in place,
and that the liquid fills the capillary tube in the stopper. In
order to avoid changes in volume due to changes in temperature,
avoid touching the filled bottle with the bare hand.

Exp. 6. Determination of the Density and Specific Gravity
of a Solid with a Pyknometer

THEORY OF THE EXPERIMENT. — Read Arts. 16, 17, 20, and 21.
The object of this experiment is to determine the density and the
specific gravity of a solid in small pieces. /

Three suitable forms of pyknometer have already been illus-
trated (Figs. 20, 22, 23). To determine the volume of a solid
by means of a pyknometer, four weighings are made: first, when
the pyknometer is empty; second, after the specimen has been
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introduced; third, after the rest of the space in the pyknometer
has been filled with water or other liquid; and, fourth, after the
pyknometer has been emptied and then filled with the same liquid
used in the third weighing. '
Representing the mass of the pykunometer by the symbol p,
that of the specimen by s, that of the liquid put into the pyknom-
eter with the specimen by [, and that of the same liquid required
to fill the empty pyknometer by L, we have for the four weighings:

1st weighing .... p,
2d weighing .... p+s,
3d weighing .... p+s+1,

4th weighing .... p + L.

From these four weighings we can find the mass s of the specimen
and the mass L — I of the liquid displaced by the specimen.
Then, the density of the specimen

p‘[__ mass of specimen ] sp (33)

~ volume of specimen| L —1’

where p represents the density of the liquid.
If & denotes the maximum density of water, it follows that the
specific gravity of the specimen is

Sp. Gr. [= ’—;‘—'] = (Ls——pl)s. (34)

- ManrtpuLaTION. — Use recently boiled distilled water whenever
the specimen under investigation will not be affected by water.
Make all weighings by the method of vibrations. Observe all the
precautions suggested in the last paragraph under Exp. 5.

Exp. 7. Determination of the Density and Specific Gravity
of a Solid by Immersion

TaEORY OF THE EXPERIMENT. — Read Arts. 16, 17, 20, and 21.
The object of this experiment is to determine the density and
specific gravity of a solid of irregular form.

Since by Archimedes’ principle, a solid body immersed in a liquid
is acted upon by an upthrust equal to the weight of the liquid dis-
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placed by the body, it follows that if this upthrust is measured,
the weight of the displaced liquid is known, and if the weight of a
unit volume of the liquid is also known, then the volume of the
liquid displaced — and, therefore, the volume of the bedy — can
be calculated. If the weight of the body in air is denoted by B,,
and its weight when immersed in the liquid by B;, then the up-
thrust of the liquid — and, consequently, the weight of the liquid
displaced —is B, — B;. So that, if w denotes the weight of a
unit volume of the liquid at the temperature of the experiment,
the volume of the liquid displaced — and, consequently, the
volume of the body — is

p=Ba= B

"™ (35)

It follows; if s denotes the mass of the specimen, that the density
of the specimen is
_ s] sw Bap:

P1=y|™B.—B,_ B,— B,

v

the last equation in (36) being true because s = B,/g and w = p;g.
Since specific gravity is defined as the ratio of the density of

the substance in question to the maximum density, §, of water,

_Ps] _ Bapl .
Sp. Gr.[— a] - B 37)

When the body is lighter than the liquid in which it is to be
immersed, a sinker is attached. Weighings are made to deter-
mine: first, the weight of the body in air, B,; second, the weight
of the sinker immersed in the liquid, S;; and third, the weight of
the two together when immersed, (B + S);. The weight of the
body alone when immersed in the liquid is negative, but its value,
sign included, is

(36)

Bl =(B+S)I—Sh
and this value can be substituted in (36) and (37), giving
0s = B.p;
* B.—B+8):+ 8

_Ps] _ BaP |
and Sp. Gr. [" ?] =B =B LS TSI+ (39)

(38)
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MAaNIPULATION. — The liquid in which the body is immersed
must be one which will not dissolve the body, act upon it chemically,
nor cause it to change its volume. Whenever possible, use is
made of water which has been freed of dissolved gases by boiling.
If the liquid contains dissolved gases, bubbles will collect on the
immersed body, causing an increased upward thrust, and therefore
an error in the result. Water should be boiled for about half an
hour and then cooled to the temperature at which the experiment
is performed. As water slowly dissolves air, it must be boiled on
the day it is used.

The motion of the balance beam is so much damped by the
immersion of the load in a liquid that it is useless to weigh by
the method of vibrations. The values of p; and & are to be
taken from tables.

Exp. 8. Determination of the Specific Gravity of a Liquid with
the Mohr-Westphal Balance

TrEORY OF EXPERIMENT. — Read Art. 21. The object of this
experiment is to determine the specific gravity of an aqueous
solution by means of a Mohr-Westphal balance.

From Archimedes’ principle it follows that if a body of constant
volume be immersed in various liquids, the corresponding losses
of weight sustained by the body will represent the weights of equal .
volumes of the various liquids. Whence, if a body of volume v,
when immersed in succession in two liquids, of densities p; and p,,
sustain the respective losses of weight w;, and w,, then

% =g _ P (40)
2 Upd P2

If the second liquid be water at the temperature of its maximum
density, then the ratio of w, to w. gives the specific gravity of the
first liquid.

If, therefore, a means be devised for measuring the loss of
welght of a given body when immersed in any liquid, and also
for determining what loss the same body would suffer if it were
inmmersed in water at 4° C., the specific gravity of the liquid could
be computed by means of the above equation.
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A convenient instrument designed for the purpose is the Mohr-
Westphal balance. This device (Fig. 25) ) a decimally
divided balance beam at one end of which is suspended a glass
sinker for immersion. The other end is so counter-
balanced that the beam is held in equilibrium when the sinker is
surrounded by air. The is also provided with four
riders which are ordi-
narily equal in mass to
1.0, 0.1, 0.01, and 0.001
of the mass of water dis-
placed by the sinker.

Thus, if the sinker be
immersed in water, one
unit rider placed at the
end of the beam would
be required to compen-
sate for the loss sustained
by the sinker and to
bring the beam back to
a horizontal position.
Again, if with the sinker -
immersed in a certain
liquid the beam is
brought into a horizontal
position when a wunit
rider is hung on the hook

A, the tenths * Fia. 25.

second notch C, and the hundredths rider on the third notch B, the

theory of forces shows that the upthrust on the sinker
-is as great as in the Consequently

the specific given liquid is 1.023.

If, as rises, the sinker were to expand at the
same rate that water does, the which the Mohr-
Westphal balance is used would make no difference, for the sinker

the same mass . as a matter

of fact, at ordinary room temperatures water expands more
rapidly than glass, so that when the temperature is a little above
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20° C. the Mohr-Westphal balance reads 0.1 per cent lower than
it would at 15°. Moreover, the temperature in a laboratory is
usually not so low as 4° C., and so the riders are usually adjusted
to read specific gravities with reference to water at 15° — about the
temperature at which European laboratories are usually kept. In
order to use the balance in a laboratory at about 20° and to get
specific gravities with reference to water at 4° it will then be
necessary to apply a correction.

To find what this correction is, let b;; and b, denote the re-
spective readings of the balance when the sinker is immersed,
(a) in water of density pis at 15° and (b) in the liquid whose
density p. at ¢° is desired, and let v;; and v, denote the respective
volumes of the sinker. Then the weights of liquid displaced by
the sinker in the two cases are respectively pisv15¢ and pev:g. Since
the readings of the balance are proportional to these weights,

Kby = P1sV15d = P1s¥od (1 + - 15) (41)
and Kb, = piVeg = peod (1 + ‘Yt), (42)

where v, denotes the volume of the sinker at 0° and 7 its coeffi~
cient of expansion. On dividing each member of (42) by the
gorresponding member of (41), we obtain

b, Pt a+ ‘Yt)

bs ps(1+v-15)
Whence, since the balance is so adjusted that b = 1,

_ 5b(l—{-'y-l5
Pt = P150¢ —1+7t )’

or, employing approximation (5), p. 7,
pe = pube (14 v-15) (1 — ~1),
or, employmg approx1mat10n 2), p. 7,
pe = pusbi [1 — v (¢ — 15)]. 43)
If the specific gravity of the liquid is desired, we have at once,
if & denotes the maximum density of water,

Sp. Gr[ 8'] p‘T‘b‘[l—y(t—w)]. (44)
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Since vy is small and pys differs only slightly from 8§, it will be
seen that if only fairly accurate values are desired, (43) and (44)

give
pe = 8b, (45)

and Sp. Gr. = b.. (46)

MANTIPULATION. — With the sinker in air and no rider on the
beam, the instrument is first leveled until the pointer attached to
the beam indicates zero. The sinker is then immersed in the
liquid whose specific gravity is to be determined, and riders are
placed in the notches on the beam until the pointer
again indicates zero.

Exp. 9. Calibration of an Hydrometer of
Variable Immersion

THEORY OF THE EXPERIMENT. — Read Art. 21.
In the measurement of the specific gravity of liquids
for technical purposes where great accuracy is un-
necessary, some form of hydrometer of variable
immersion is usually employed. The hydrometer
(Fig. 26) consists of a closed graduated glass tube of
uniform cross section with a weighted bulb on the
lower end. The mass and volume of the instrument
are so chosen that when it is placed in the liquid
whose specific gravity is to be determined it will
float upright. The specific gravity of the liquid is
shown by the depth to which the hydrometer sinks. If the gradu-
ations on the stem are so spaced and numbered as to give directly
the density of the liquid, the instrument is called a densimeter.
Often, however, the graduations are equidistant and are referred
to some arbitrary scale. Thus we have the scales of Baums§,
Beck, Cartier, and Twaddell. The specific gravities corresponding
to readings on these various scales are given in Table 6. Not
infrequently the stem of the hydrometer contains two or more
scales. When graduated with especial reference to use with some
particular class of liquids, the hydrometer is called the alcoholim-
eter, salinimeter, etc.

Fia. 26.
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The quantity which has to be added to a reading in order to
obtain the corrected reading is called the correction for that
reading. The object of this experiment is to plot a correction
curve, codrdinating the hydrometer readings and the corrections
to be applied.

(a) Scale with divisions of equal length. If an hydrometer of
mass m sinks to scale division d; when placed in a liquid of density
p1, and to division d; when placed in a liquid of density pz, then by
Archimedes’ principle the volume of the first liquid displaced is
g and of the second is :—’: If u denotes the volume of that part of
the stem which is included between two consecutive scale divisions,
then

m_m_ -
E = o u (dy — dy).
_ m(p2—p1)
Whence, v= = =) 4"
- Moy
or P o s = @ )

From (47), if p1, pz, and m are known, the value of « can be found,
and from (48), if w, p1, and m are known, p; can be found.

If the maximurh density of water is denoted by 4, the specific
gravity of the second liquid is

mpr
Sp. G”[ ] i — o (s — TS (49)

() Scale in which the successive divisions express equal dif-
ferences in density. Consider a wooden rod of mass m, of uniform
cross section g, and so loaded at one end that it will float upright.
When the rod floats, the weight of liquid displaced is by Archi-
medes’ principle equal to the weight of the rod. That is, if the
rod sinks a distance [, in a liquid of density p,

pihgg = myg.

Whence, L= ps q (50)



CALIBRATION OF AN HYDROMETER 53
Similarly, if the rod sinks a distance I, in a liquid of density p,,

m
=—- 51
b= (51)
Dividing each member of (50) by the corresponding member of
(51),
h_p, (52)

That is, the distances to which this hydrometer of
uniform cross section sinks in various liquids are
inversely proportional to the densities of those liquids.

Consider now an hydrometer of the usual form,
which is not of uniform cross section throughout, x
but which is of uniform cross section above some
point K (Fig. 27). For this hydrometer there is at
some unknown distance z.below K a point to which
the hydrometer would extend if it had still the same
mass and volume which it really has, but if, instead
of the varying cross section which it really has, it
continued throughout with the same cross section
which it has above K. Suppose that in one liquid
this hydrometer sinks to a point distant &, above K,
and in another liquid to a point distant h; above K.
Then from (52),

h_(utz_p
[k _]hz‘l'x = Pl’ (53) Fra. 27.
or o = Tepe = gy (54)
P1L— p2
Also, from (53)
ey itz

If the maximum density of water be denoted by & the specific
gravity of the liquid is, then,

' _p|_n(ut2)
Sp. Gr. l:—. 3] = m' (56)
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That is, for any given distance k, above K, Fig. 27, the hydrometer
reading should be that given by (56).

If we determine to what distance above K the hydrometer sinks
in each of two liquids of known densities, we can by (54) deter-
mine z. And if we know to what distance above K the hydrometer
sinks in one liquid of known density, and know also z, then if we
determine to what distance above K the hydrometer sinks in any
other liquid, we can by (56) determine the specific gravity of that
liquid.

Uniformity of cross section of the hydrometer may be tested
by reading diameters at various points with a micrometer cali-
per. If the cross section be not uniform above K, the above
method of calibration is not applicable.
In this case some dozen or twenty solu-
tions having densities varying somewhat
uniformly within the range of the hydrom-
eter should be made up, the density of each
determined, and the reading of the hydrom-
eter in each taken. This method of cali-

Fia. 28. bration is, of course, more accurate, but is
more tedious than the other.

ManrtpuraTION. — The surface of the liquid about an hydrom-
eter is usually of a shape similar to that in Fig. 28. AB is the stem
of the hydrometer and CD is a tall narrow jar in which the liquid
is placed. First be sure that the hydrometer is floating freely,
and then place the eye below the level of the liquid surface and
raise it until it is sighting the hydrometer along the dotted line.
The point of the scale crossed by this line is the required reading.
The temperature of the liquid should be noted at the time of each
observation. When changing from one liquid to another, the jar,
hydrometer, and thermometer are to be thoroughly washed and
dried. Determine the densities of two liquids either with a pyk-
nometer or with a Mohr-Westphal balance. Observe the scale read-
ings on the hydrometer when it is floated in turn in the two liquids.

(a) If the hydrometer has a scale with equal divisions, weigh
. the instrument, place it in succession in two liquids of known

densities, and then by means of (47) calculate the value of u. By

Cp
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means of (49) calculate the specific gravity corresponding to each
of the numbered scale divisions on the stem of the hydrometer.
Plot a curve with these calculated specific gravities as abscisse
and the corresponding scale readings as ordinates. This is the
calibration curve of the instrument. The calibration curve should
be checked by comparing two or three values obtained by means
of the hydrometer in connection with the curve, with values
obtained by means of a pyknometer or a Mohr-Westphal balance.

(b) In the case of the densimeter or direct-reading hydrometer,
select any convenient point on the scale as K. Lay a steel scale
along the stem of the hydrometer and record the distance from K
to each numbered division of the hydrometer. Also, record the
distance from K to each of the points to which the hydrometer
sank when placed in the two liquids whose densities were previously
determined. From these last two readings together with the
densities already determined, calculate z by (54). Knowing z
and the distance from K to the various hydrometer divisions, use
(56) to determine what the hydrometer readings should be at the
various points along the scale.

The observations and results should be arranged in a table,
somewhat as follows:

Correction

Specific %mvity
1+ 2) pag ey

o (
8 (h+2)

Hydrometer Distance above
reading = H K=h btz 8=

Plot a correction curve, coordinating hydrometer readings and
the corrections to be applied.

Exp. 10. Determination of the Correction Factor of a
Planimeter

THEORY OF THE EXPERIMENT. — Read Art. 15. The correction
factor of a planimeter is that number — usually near unity — by
which the area read from the instrument must be multiplied in
order to get the true area.
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Equation (10) suggests at once a method of determining the
correction factor of a planimeter. If d denotes the diameter of
the roller, and ! the length of the tracer arm AC, then the area
which can just be circumscribed by the tracing point while the
roller rotates once is, by (10), equal to =dl. If the roller be so
graduated that the area indicated for one rotation is a, the correc-
tion factor K is given by
' wdl

K="= 67)

Man1ruLaTION. — With a steel scale and a sharp penecil lay off
a rectangular area of not less than 150 sq. cm. Make five careful
readings of the length and breadth of the rectangle. If the tracer
arm be adjustable in length, note the reading on its scale. Place
the pole point outside the rectangle, bring the tracing point to one
corner, and read the planimeter. Using the steel scale as a straight
edge to guide the tracing point, circumscribe the rectangle in the
clockwise direction, and again read the planimeter. In this
manner measure the area at least ten times. The product of
the average length and average breadth of the figure divided by
the average difference between the final and initial readings of the
planimeter gives the correction factor.

With a micrometer caliper determine the diameter of the roller.
With the steel scale make five readings of the length of the tracer
arm. From these calculate the correction factor by (57). Com-
pare the results obtained by the two methods.

Exp. 11. Correction for Eccentricity in the Mounting of
a Divided Circle

THEORY OF THE EXPERIMENT. — Angles are often measured by
means of a divided circle and an index or vernier attached to an
arm capable of rotation about an axis passing through the center
of the circle. This method is subject to a source of error due to
the mechanical difficulty of mounting the arm carrying the vernier
so that its axis of rotation accurately coincides with the normal
axis of the divided circle. The object of this experiment is to
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construct a correction curve for a divided circle having an eccen-
trically mounted vernier.

Let C (Fig. 29) be the center of the divided circle, A and B the
zero points of the two verniers carried on arms capable of rotation
about the point D. If the line AB passes through D, and D coin-
cides with C, there is no eccentricity in the mounting, and correct
angular readings are obtained by means
of a single vernier. But in the general .
case where neither of these conditions ™
is fulfilled, correct angular readings. x
can be obtained only from simultaneous
readings of the two verniers A and B.

Let A° and B° be the observed
readings. ' Draw A,;B; through C
parallel to AB. If there were no
eccentricity in the mounting, and if A X
and B were diametrically opposite, the Fia. 29
readings would be A4,° and B,°. In '
other words, A;° and B,° are the true readings corresponding to
the observed readings A° and B°. Through C draw the lines BE
and AF. '

Since A;B; is parallel to AB, and AC equals BC,

LECA,= £CBA = £ BAC = £ ACA..
Therefore £ XCA, =} (£ XCE + £ XCA),
or A° =} (E° + A°).

If the division lines on the circle are numbered as shown in the
figure, E° = B° — 180°. Consequently the corrected reading of
the vernier A is

' A° =} (A° + B° — 180°). (58)

This is the corrected reading for the vernier giving the smaller
reading.

© In precisely the same manner, since B," = § (B° 4+ F°) and
gince F° = 180° 4+ A°, the corrected reading of the vernier B is

B =} (4° + B° + 180°). (59)



58 FUNDAMENTAL MEASUREMENTS

This is the corrected reading for the vernier giving the larger
reading.

In this manner, by means of two verniers, is obtained the
reading of either vernier corrected for eccentricity of mounting.

MANIPULATION. — Starting with one vernier near the zero point
of the circle, read both verniers. Then move the verniers about
thirty degrees and again read them both. Repeat at intervals of
about thirty degrees until the entire circumference is traversed.
The corrections for the observed vernier readings are found by
subtracting the observed readings from the corrected readings.

On cross-section paper lay off the observed readings of one
vernier on the axis of absciss@ and the corresponding corrections
on the axis of ordinates. The curve drawn through the points
thus obtained is the correction curve for this vernier. From the
form of this curve decide whether C and D are coincident, and
whether AB passes through D.

Exp. 12. Radius of Curvature and Sensitivity of a Spirit Level

THEORY OF THE EXPERIMENT. — In many measurements in
which a spirit level is used in connection with other physical
apparatus it is necessary that the sensitivity of the level be at
least as great as that of the other apparatus. An example is the
- case of the telescope and level of an engineer’s transit. When
used in leveling or in measuring vertical angles, the least vertical
motion of the telescope which can be detected by means of the
cross hair should a so make itself evident by a displacement of the
level bubble. A test of the suitability of a level for a particular
use includes the determination of the uniformity of the run of the
bubble in the vial and the sensitivity of the spirit level. The
sensttivity of a spirit level may be defined as the distance the bubble
moves for an inclination of the level of one minute. Since the
sensitivity can be proven to be directly proportional to the radius
of curvature of the vial, it is often designated by the radius of
curvature. The object of this experiment is to make a test of a
spirit level.

In the laboratory a spirit level is usually tested by means of a
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Level Trier consisting of a base plate upon which rests a T-shaped
casting supported by two projecting steel points E and F (Fig. 30)
at the end of the arms of the T and a micrometer screw M at the
foot of the T. The pitch of the micrometer screw must be meas-
ured and also the perpendicular distance from the micrometer
screw to the line connecting the points E and F. The level to be
tested, L, is placed on the T and the position of the bubble in the

Fia. 30.

vial is noted by means of a scale engraved upon the glass or by a
scale S attached to the level trier. In case it is inconvenient to
separate the level from a piece of apparatus of which it forms a

Fia. 31.

part, the entire apparatus, e.g., a telescope or theodolite, may be
mounted in the grooves ABC or DEF.

After the spirit level is in place, the micrometer reading is noted.
The T is now tilted through a small angle by turning the microm-
eter screw, and readings are again taken of the micrometer screw
and the position of the bubble. '

Suppose that by means of the micrometer screw the T of the
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level trier is moved from the position FJ (Fig. 31) to the position
FJ’, the middle of the bubble moving meantime from G to H. If
a vertical line GK were drawn through G before the micrometer
screw was turned, and if this line were to move with the level, it
would after the movement be in a position G'P, such that the
angle through which it moved would equal the angle JFJ’ through
which the level moved. A vertical line through the middle of the
bubble’s position of rest has the direction of a radius of the bubble
vial. If, then, HP is drawn vertically through H, both HP and
G'P are radii of the vial. But since HP and GK are parallel, the
angle G'PH equals the angle between GK and G'P, which latter
has just been shown to equal JFJ'. It follows that

ZG'PH = £LJFJ'.

Let G'P be denoted by R, G’'H by d, FJ' by z, and JJ' by y.
Then '
d

= 6 radians, (60)

and, since the screw is always perpendicular to the T,
Y ~ tano.
z

Since 6 is always very small, tan 6 = 0, and we have

.Y ‘
=5 (61)

=v]E~

I

zd,
Y

|

whence, R = (62)

Since, by definition, the sensitivity

i d
S—b,

it follows that
S =R,
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If the angle 6 is to be expressed in degrees instead of in radians,

S[,_ d ]_ d
0 (radians) | 180

™

0°.

The sensitivity of a spirit level is frequently expressed in centi-
meters per minute of arc. In this case,

. d . d o . R
8= 7m0y 60, " 3438 7~ 3438y 3438 (63)
™

MantpuLATION. — Place the T-shaped casting upon a piece of
bristol board, and by means of slight pressure obtain an impression
of the three supporting points: Measure the perpendicular
distance from the impression made by the end of the micrometer
screw to the line connecting the impressions of the other two .
supporting points.

The pitch of the micrometer screw may be obtained in the
following manner: After placing the spirit level on the trier, adjust
the micrometer screw until one end of the bubble is directly under
a scale division near the middle of the vial; then insert under the
micrometer screw a small picce of plate glass whose thickness has
been already measured with a spherometer or micrometer caliper,
and again adjust the micrometer screw until the bubble rests at
the same point as before. The thickness of the glass plate divided
by the necessary number of turns of the micrometer screw gives
the pitch of the latter.

Again adjust the micrometer screw until one end of the bubble
is directly under a scale division near onc end of the vial. Observe
the micrometer screw reading and the scale readings at hoth ends
of the bubble; rotate the micrometer screw thrcugh a convenient
number of spaces and take readings as before. Rotating the
micrometer screw the same number of spaces each time, continue
this operation until the bubble has been removed in some half
dozen steps to the other end of its run, and then return step by
step in the same manner. Repeat this series of readings three
times. A series of such readings may be conveniently tabulated
in the following form:
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Readings of bubble - Displacements
Number of Micrometer Length of
observation reading bubble
Left end | Right end | Left end | Right end
mm. mm. mm. mm, mm, mm.
1 3.700 1.3 10.2 | ....... | ....... 8.9
2 3.800 6.1 14.9 4.8 4.7 8.8
3 3.900 11.1 19.8 5.0 4.9 8.7
4 4.000 16.2 25.1 5.1 5.3 8.9
5 4.100 21.1 30.2 4.9 5.1 9.1
6 4.000 16.1 25.1 5.0 5.1 9.0
7 3.900 1.1 19.9 5.0 5.2 8.8
8 3.800 6.2 15.0 4.9 4.9 8.8
9 3.700 1.3 10.2 4.9 4.8 8.9
Mean 4.95 5.00 . 8.88

The values in columns 2, 3, and 4 are read, and those in 5, 6,
and 7 are calculated from these readings. The values in columns
5 and 6 show the uniformity of the run of the bubble, or the varia-
tion in sensitivity when the bubble is at different positions in the
vial. The average radius of curvature and sensitivity of the vial
are obtained by substituting for d in (62) and (63) the mean dis-
placement obtained from columns 5 and 6.

Care must be taken to keep the entire vial at the same tem-
perature. It must not be touched by the fingers nor breathed
upon, as when unequally heated the bubble tends to move toward
the point of highest temperature.

Exp. 13. The Acceleration due to Gravity by Means of
a Simple Pendulum

THEORY OF THE EXPERIMENT. — In elementary text-books on
General Physics it is shown that the period of a complete to-and-fro
vibration of a simple pendulum of length ! vibrating through a
small arc at a place where the acceleration due to gravity is g, is

T = 21:'\/-1-.
g

Whence, g= (271:_)2 L (64)
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The equation is deduced on the assumption that the pendulum has
its mass concentrated at a point on the end of a perfectly flexible
suspension. An increase either in the size of the bob or in the
mass of the suspending wire increases the error introduced by using
the above equation. If the length'of the pendulum is taken as
the distance from the supporting knife edge to the center of mass
of the bob, and if this distance be about 100 em., and the diameter
of the bob about 3 cm., the value found for g is about 0.01 per cent
too small. With the same length of pendulum, if the mass of the
supporting wire be about 0.3 g. and the mass of the bob about
75 g., the value found for ¢ is about 0.07 per cent too large.

As the period T of the simple pendulum enters (64) as a second
power while the length enters as a first power, the valuc of the

.period must be known to a higher degree of precision than the
value of the length .

The method of coincidences now to be described is a very accurate
method for the comparison of two nearly equal periods of vibra-
tion. In the present experiment the period of the simple pendu-
lum is to be compared with that of a standard clock pendulum that
beats seconds. If the simple pendulum swings slightly faster than
the clock pendulum, a moment will occur when both are at their
lowest points at the same time. But since the simple pendulum is
all the time gaining on the clock pendulum, after a certain inter-
val it will have gained a whole oscillation, and then both pendu-

- lums will again be at their lowest points. If between two such
coincidences the pendulum has made n swings, then the clock
pendulum has made » — 1 swings. One swing of the clock pen-
dulum represents one second. Represent the time of one swing
of the simple pendulum by 1 7T sec. Then the number of seconds
between two coincidences is

(g)n —1(n—1),

T n-1 '
or g =, sec (65)

One method of determining the instant of coincidence employs
an electric circuit containing the two pendulums, a battery, and
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a telegraph sounder or telephone receiver, all in series as shown in
Fig. 32. When the two pendulums are in coincidence, they pass
through the mercury contacts A and B at the same instant, and
at this instant the sounder clicks. It is to be kept in mind that
the n in the above expressions denotes the
number of swings made by the simple
pendulum — not by the clock pendulum.

Since one pendulum gains only slightly
on the other, and since the passage of the
pendulums through the mercury cups at A
and B is not instantaneous, there are often
clicks for several successive swings. The

(), mean time of the first and last of these
+/_§s\-—=3 successive clicks is used as the instant of
coincidence.

The actual instant of coincidence, .e.,
the instant when each pendulum is distant from its position of rest
by the same fraction of a vibration that the other is, may occur when
both pendulums are in some position other than at their lowest
points, but it can never be more than half a swing from the lowest
point. If there are only a few successive clicks, it will be safe to
assume that in taking the mean of several successive clicks, the time
of coincidence is not in error by so much as one swing. If the simple
pendulum be swinging faster than the clock pendulum, the error
introduced into the value for the half period by getting for n one
=2

Fic. 32.

swing too few is the difference between the period found
. n—1 .
and the true period, 0

n—2 n—1_ 1

n—1 n  am-=1)
L3

If n be large compared with unity, the error is almost —%-

Thus if n = 70, the error introduced into the period by an error
of 1 in the number of seconds between coincidence is about
—0.0002 sec. If n be small, the accuracy may be increased by



THE ACCELERATION DUE TO GRAVITY 65

counting the number of seconds to some later coincidence instead
of to the second. In this case one pendulum will have gained on
the other more than one swing, and the above formulas must be
modified accordingly. h

Fia. 33.

MANIPULATION. — A convenient arrangement of apparatus for
the measurement of the length and the comparison of the period
of a simple pendulum is shown in Fig. 33. The simple pendulum
B is connected in series with the seconds pendulum of a standard
clock not shown in the figure, a battery, and a telephone receiver
R. Beside the simple pendulum is a vertical scale S. The
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length of the simple pendulum is determined by means of this
scale and a horizontal telescope, T, that can be moved up and
down a vertical rod.

\With the pendulum at rest, adjust the position of the support-

_ing knife edge till, (a), the knife edge is at right angles to the plane
of vibration of the pendulum, (b), the contact point attached to
the bob dips into the center of the ridge of mercury below it.
Adjust the scale until the face of the scale and the pendulum are
in the same plane, and the edge of the scale is parallel to the
pendulum. Set the pendulum swinging with an amplitude of
about two centimeters. By the aid of a watch held in the hand
determine whether the period of the pendulum is greater or less
than one second. Now, with the head band of the telephone
receiver in place, note the number of swings of the simple pen-
dulum between clicks. At each time of coincidence there will be
several clicks. The mean time of the first and last of these suc-
cessive clicks is to be used as the instant of coincidence.

Thus, for a given simple pendulum, indicating the swing at
which the first click occurred by zero, and thereafter counting
the swings for several minutes and noting the particular swings
at which clicks occurred, the data given in the following table
were obtained. Also, by counting the number of swings made in
two minutes, it was found that the period of this pendulum was
less than that of the standard clock.

Initial click of series Final click of series Mean Interval
0 3 1.5
52 55 53.5 52.
104 107 105.5 52
156 159 157.5 52
208 211 209.5 51.5
259 263 261.0 515
310 315 312.5 52°5
361 369 365.0 :
51.93

Since the simple pendulum had a period less than the standard clock, while
the simple pendulum was making 52 vibrations the standard clock was mak-
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ing 51 vibrations. Whence, the period T of the simple pendulum had the
value given by (65),

T[_n—-l 5_1

To measure the length of the simple pendulum, first make the
telescope horizontal and the supporting rod vertical in the manner
described in Art. 14. Now focalize the telescope on the sup-
porting knife edge and adjust the position of the telescope till
the cross hairs coincide with the image of the edge. Rotate the
telescope about the vertical supporting rod until the scale S is in
the field of view, and take the scale reading that coincides with
. the cross hair. Fractions of the smallest scale divisions are to be
determined by the micrometer in the telescope eyepiece. In the
same manner read the positions of the top and of the bottom of
the bob. For the length of the simple pendulum use the distance
from the knife edge to the center of the bob. Make at least two
determinations of the length and take the mean.

Exp. 14. Determination of the Speed of a Projectile by the
Ballistic Pendulum

TaEORY OF THE EXPERIMENT. — The object of this experiment
is to determine the speed of a bullet from a rifle.

Newton proved that if two bodies are moving along the same
straight line, the speed of the first with respect to the second
after a collision between the two is directly proportional to the
speed before the collision, the proportionality factor depending
upon the elasticity of the two bodies and being called the coefficient
of restitution of the given bodies. He also proved that if no
external forces act upon a system of bodies, the total momentum
of the system is constant.

Imagine that a projectile of mass m and speed u strikes a body
of mass M and speed U. and that after the impact the speeds
are u' and U’ respectively. Then before impact the speed of
the projectile with respect to the other body is (v — U), and
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after impact it is (' — U’). It follows, then, from the state-
ments in the preceding paragraph, that

w—U=¢e(u—"0) (66)
and mu + MU’ = mu+ MU,. 67)

where e is the coefficient of restitution of the bodies. If the
bodies are perfectly elastic, e = 1, and if they are perfectly in-
elastic, e = 0. If the experiment be so arranged that the initial
speed of the large mass is zero, and that after the impact the
two masses move together, thus acting like inelastic bodies, then
U =0 and e = 0. On making these substitutions in (66) and

o (67) and then eliminating w’
A between them, we get
’t’ Il
ey u= (’” Lt ) U. " (68)

The conditions necessary to
fulfill the requirements of
this equation are met by the
use of the ballistic pendulum.
This consists (Fig. 34) of a
block of wood so suspended
that it can swing freely about
C as an axis. When a bullet
strikes the pendulum bob,
the whole impulse may be
used in giving to the bob a motion of translation in the direc-
tion in which the bullet was moving, or part of the impulse may
be used in producing torques which tend to set up wobbling mo-
tions that are not taken into account in the above equations.
If the bullet strikes at a point called the center of percussion,
these torques are not produced. The center of percussion is at a
distance from the axis of rotation equal to the length of the equiv-
alent simple pendulum, and when the masses of the supporting
cords are small compared with that of the bob, the lower end of this
equivalent simple pendulum is very near the center of mass of
the bob.

Fi1a. 34.
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If the angle through which the pendulum is deflected by the
impact of the bullet is denoted by 6, the height through which
the center of mass of the pendulum is elevated by h, and the
distance from the axis of rotation to the center of percussion by I,
then h =1 (1 — cosd). By the time the bullet has ceased to
move through the pendulum bob they both have a speed U’, and
consequently kinetic energy equal to ¥ (m + M) U”2. When the
end of the swing is reached, this kinetic energy has all been used
in lifting them through the distance &; t.e., in doing work equal
to (m + M) gh.

Consequently, }(m+ M) U” = (m+ M) gh.

Whence, U =+vV2gh=+vV2gl(1— cosb).
On substituting in (68) this value for U’, we obtain
u=m;MV2gl(1——coso). | (69)

MaNIPULATION. — In setting up the apparatus see that the line
of flight of the bullet is horizontal, that it is perpendicular to the
axis of rotation of the pendulum, and that it passes through the
center of percussion of the pendulum. Weigh the wooden plug
in the center of the pendulum bob both before and after the
bullet is fired into it. Weigh the rest of
the bob, measure I, and observe 6.

Exp. 15. Determination of the Coefficient
of Kinetic Friction between a Pulley
and an Unlubricated Shaft

THEORY OF THE EXPERIMENT. — Read
Art.!22. Consider a shaft of radius r on
which rotates a pulley of radius R sup-
- porting a string to the ends of which are Fic. 35.
applied weights W, and W,, Fig. 35. Let
the difference between W; and W, be such that after the pul-
ley is started, it will rotate at a uniform rate. The torque
(W1 — W,) R is then equal to the opposing torque due to the
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friction between the shaft and the pulley. Denoting the co-
efficient of kinetic friction of the pulley on the shaft by b, and
the force pressing the pulley against the shaft by f;, then the
torque due to friction equals b.f;r. Whence,

(Wl -_ Wz) R = bgfzr.
If the weight of the pulley be w, then when motion is uniform,
Jo = (W1 + W2+ w), and consequently,
by = (W,—Wy)R
(W1 + Wa + w) r

MANTPULATION. — Clean the shaft and bearing. Weigh the
pulley. By means of calipers and scale, find the diameter of the
pulley and of the shaft. Hang a cord over the pulley and apply
to each end a load of 0.5 kg. Find the overload necessary to
maintain uniform motion when the pulley is once started. From
these data compute the coefficient of kinetic friction for the given
load.

Likewise, find the coefficient of kinetic friction for loads of
about 2 kg., 3 kg., and 4 kg.

Plot a curve having values of (W, + W, + w) as abscisse, and
(W, — W) as ordinates.

Choosing some convenient value of (W, + W, + w), find from
the curve the corresponding value of (W, — W3), and calculate
the horse power that would be absorbed by friction if the pulley
were making 200 r.p.m.’

(70)

Exp. 16. Determination of the Coefficient of Kinetic Friction
between a Lubricated Journal and its Bearings

TueorY oF THE EXPERIMENT. — The object of this experi-
ment is to determine the coefficient of kinetic friction between a
cylindrical journal and its bearings for different loads, speeds,
and temperatures. The apparatus consists of a spindle passing
through a bearing B (Fig. 36), forming part of a yoke C. The
spindle can be rotated at various speeds by means of a motor,
and the yoke can be loaded by means of adjustable masses M’ and
M. As the spindle is rotated the friction between it and the
bearing tends to rotate the yoke also. This tendency to turn is
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measured by the spring dynamometer D, which is essentially a
spring balance. By means of a current-carrying conductor in the
collar A, the temperature of the oil-covered surface can be con-

Fia. 36.

trolled. The temperature at any time is indicated by a ther-
mometer 7'.
If r be the radius of the shaft and F’ the total force of friction

Fic. 37.

tangential to the surface of the shaft, the turning moment result-
ing from the friction of the shaft and bearing is F'r. If f represents
the force, having a lever arm I, required to keep the yoke from
turning (Fig. 37), the resisting torque is fI. If the center of mass
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of the yoke with its appendages is vertically below the axis of
rotation of the shaft, then when the shaft is rotating and the

yoke is held steady,
‘ F'r = fl.

If the total weight on the bearing surface due to the yoke and
its accessories together with the masses M’ and M" be denoted
by F, and the coefficient of kinetic friction between the shaft
and bearing by b, then, Art. 22, F' = bF. Whence,

o[- F]- & (71)
F Fr

MAaNIPULATION. — Measure (I + r) and 2r with calipers and
scale. After cleaning the journals and bearing with gasoline,
lubricate with the assigned oil and apply small and nearly equal
loads to the ends of the arms of the yoke. The difference be-
tween these two loads should be sufficient to develop a turning
moment due to gravity slightly greater than that due to friction.
Start the motor, and by means of the spring dynamometer D
measure the tendency of the yoke to turn. Reverse the direction
of .rotation and take another dynamometer reading. By this
operation the pull developed by the friction between the shaft
and bearing is first added to the pull on the dynamometer due to
the excess weight on one end of the yoke, and then subtracted
from it. The difference between the two dynamometer readings
is 2f. The data are now at hand for computing the coefficient,
of kinetic friction between the given surfaces lubricated by the
assigned oil, for the particular speed, temperature, and load used
in this determination.

The speed can be obtained by means of a stop watch and revo-
lution counter. The values of speed and temperature are not
required in the computation, but are required in specifying the
conditions under which the determined value of the coefficient of
friction applies. Proceeding as above described and keeping the
temperature constant, find the coefficient of kinetic friction for
various values of F for each speed given by the three steps of the
cone pulley.

Plot curves coordinating coefficient of friction and load for
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each speed, and also curves coordinating coefficient of friction and
speed for each load.

Care should be exercised that the direction of rotation of the
journal is frequently reversed, especially when the bearing is
heavily loaded, so as to avoid error due to inequality of the wear-
ing of the bearing.

Exp. 17. Determination of the Coefficient of Kinetic Friction
between Two Plane Surfaces

THEORY OF THE EXPERIMENT. — The object of this experiment
is to determine the coefficient of kinetic friction for iron upon
iron.‘ From the definition (Art. 22),

’
b= %, (72)
where F,’ is the force parallel to the slipping surface necessary to
maintain uniform motion, and F, is the force normal to the slip-
ping surface pressing the two bodies together.

Fia. 38.

The apparatus consists of a horizontal plate having a small
pulley fastened at one end, and a block that can be drawn along
the length of the plate by means of a cord passing over the pulley,
Fig. 38.

Since the slipping surface is horizontal, F, equals the weight of
the block. The value of F,’ parallel to the slipping surface
required to maintain uniform motion will now be deduced.

Let the weight of the mass on the end of the cord necessary to
maintain uniform motion be F,. On account of the unavoidable
friction of the pulley on its bearing, F; must be greater than F,'.
Thus, F; — F,’ produces a torque about the axis of the pulley, in
the direction opposite to the torque produced by the friction of
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the bearing. When the motion is uniform these torques are
equal. Then, if the radius of the pulley be R, that of the shaft »,
the resultant force acting on the shaft f;, and the coefficient of
friction between shaft and journal b, we may write

(Fi—F,)R = (fby)r
_ ’
B 7 L b%r = ¢ (a constant).
In case the weight of the pulley is sufficiently small compared
with the resultant of F; and F,’ it may be neglected without
affecting the final result more than the unavoidable errors in

or

A =AB
R}

F1 B_ m u{..,u?’ W
Fia. 39. Fia. 40.

measurement. In this case, the f; in the above equation is rep-
resented by the distance AB in Fig. 39. Then,

Cc = ———I;'l — Fp ' .
VF?+ F,"
Squaring and clearing of fractions,

¢F2+ F,* = Fy — 2F\F,' 4+ F,", .
FrE—1)4+F/Q2F)+F?(*—1)=0,

pore —2F, +VAFE—4(@—10F:_ F[1=Vi—(¢ =28 +1)]
S = =

73)

2@ —-1) 1-¢
_Flhxve@e—0o)] Fllxzcve=4]
- 1-¢ - 1-¢ ) (74)

It will be recalled that the constant ¢ equals the ratio of the
tangential force required to keep the pulley in uniform motion,
to the force pressing the pulley against the bearing. This ratio
can be most readily obtained from a supplementary experiment
in which a cord with a body on each end is hung over the pulley,
Fig. 40. The weights of the two bodies must be so adjusted that
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after the pulley is started, it will rotate with uniform speed. If
these weights be W, and W,, the tangential force just sufficient
to overcome the friction of the pulley is W, — Wy, and, the weight
of the pulley being neglected, the force pressing the pulley against
its bearing is W, + W,. Then,

c= Wi—W, A
T W.+W. B’
where A is used as an abbreviation for W, — W,, and B for

Wi+ We.
Making this substitution in (74), we obtain

(75)

A\/sz—Aﬁ]

F,_F‘[liﬁ B o [BEAVIE— &

» = B4 =P B A° - (76)
B

Since the quantity in square brackets is the same for all values
of F,' and F,, it can be denoted by the single letter k& and the
above equation written in the abbreviated form

F p’ = kF 1e
The coefficient of kinetic friction between the two surfaces is,
then, r
| kR
b[‘ Fn] - F. @

MANIPULATION. — After cleaning the block and the surface
of the plate and making the plate horizontal with the aid of a
spirit level, place the block near one end and add masses to the
pan until the block on being started keeps in uniform motion.
Make not less than three determinations of F; for the given load
F,. Even with carefully machined and hand scraped surfaces the
various values of F, will differ considerably. In the same manner,
find the average value of F;, when the block is loaded with 100
gm., 300 gm., 500 gm., and 700 gm.

Hang over the pulley a string with the block suspended on one
end and an equal mass on the other. Add to one end such an
overload that after being started the pulley will move at a uniform
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rate. From the weights on the two ends of the string find A
and B. With these values of A and B compute the constant k.

- For each load F, calculate the value of F,’ and also the coeffi-
cient of kinetic friction b.

Plot a curve showing the relation between F, and F,’. .This
curve should be very nearly a straight line, and, if the normal
forces, F,, are plotted as absciss®, (77) shows that the slope of
the curve gives the coefficient of friction. Determine the slope
of the curve and see how the result checks with the mean of the
previous results.

Exp. 18. Determination of the Moment of Inertia of a Rigid
Body by the Rotation Method

TueorY oF THE ExXPERIMENT. — Read Art. 23. The compari-
son of moments of inertia of small bodies is readily effected by
means of the apparatus shown in Fig. 41. This consists of a light
circwar table 7" attached
to the upper end of a
vertical spindle which ro-
tates with very slight
friction. The lower end
of the spindle is provided
with a drum E, to which
a constant torque can be
applied by means of a
weight acting through a
flexible cord arranged as
shown. By means of an
electromagnetic release MR in electric connection with a switch
and a seconds pendulum, the circular table can be released at
any clock beat, and thereafter the armature M will give a sharp
click at each succeeding second.

If the mass A falling in front of the vertical scale has a uniform
linear acceleration a, then the rotating system has a uniform
angular acceleration a. If the falling body starts from rest, then
in time ¢ it will fall through some distance z, such that z = % af®.

Fia. 41.
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If the spindle on which the cord is wound has a radius r, and
the cord neither shps nor stretches, the a.ngula.r acceleration of

the rotating system is
a 2z )
a [_ ;] ._ == (78)

Whence, the angular acceleration of the rotating body is directly
‘proportional to the distance x passed over by the falling mass
during any assigned time {.

If the torque due to the weight of the falling mass acting on the
spindle of radius » be denoted by L, and the moment of inertia
of the rotating system with respect to the axis of rotation be de-
noted by K, then from (21) and (78), the angular acceleration
equals

L_2z
K 1
Whence, x=(L7Tt2)Il{

All the quantities within the parenthesis are constants. Put«
ting ¢ for the term within the parenthesis,

_c
: "TK

Consequently, if the rotating body be acted upon by a constant
torque for a given time, the falling body will pass through a dis-
tance inversely proportional to the moment of inertia of the
rotating body.

Representing the moment of inertia of the empty table and
spindle by K,, and the distance the falling body passes through
in the given time by z., we have
f". . (79)

Te =

Similarly, if there be placed on the table a body whose moment-
of inertia with respect to the axis of rotation is K;, and the dis-



78 FUNDAMENTAL MEASUREMENTS

tance traversed by the falling body in the given time be repre-
sented by z;, we will have

c
“EEAK ©0
And if another body be substituted for this body,
c
“KAK &

By eliminating from (79), (80), and (81) the two unknown quan-
tities ¢ and K., we obtain for the ratio of the moments of inertia
of the two bodies placed on the rotating table,

Ki_ 2@ —a)
K, - T (xc - 32) (82)

Thus, by noting the distance traveled by the falling body in a
given time when the rotating table is empty, and then when
loaded by any two bodies, one after the other, we obtain the
ratio of the moments of inertia of the two bodies” with respect
to the axis of rotation. By using one body of such simple geo-
metrical shape that its moment of inertia can be computed, the
moment of inertia of any other body can be determined.

MantpuraTION. — The above discussion assumes that there is
no effect due to friction of the bearings of the rotating shaft or of
the pulleys that carry the string. The effect of friction will be
neutralized when such a weight is applied to the end of the string
that the spindle will rotate with constant angular velocity. First,
see that the armature of the magnetic release in the clock circuit
beats properly when the switch is closed. Place on the circular
table a body of known moment of inertia, for example, a circular
ring of known mass and dimensions. Adjust the mass in the
scale pan on the end of the string till it falls through equal dis-
tances in equal times. Then add 100 gm. to the scale pan and
note the distance that it falls from rest in 50 sec.

Substitute for the body of known moment of inertia the body
whose moment of inertia is to be determined, and proceed as
before.
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Weigh and measure the circular ring, and compute its moment
of inertia by means of (27).

These data substituted in (82) give the required moment of
inertia of the body under investigation, with respect to the axis
of rotation.

‘Exp. 19. Determination of the Moment of Inertia of a Rigid
Body by the Vibration Method

THEORY OF THE EXPERIMENT. — Read Art. 23. In this experi-
ment the moment of inertia of a body is to be determined by ex-
periment and also by computation. In any case where a body can
be set into free simple harmonic motion of rotation about the axis
with reference to which the moment of inertia is required, it is a
simple matter to determine experimentally the moment of iner-
tia of the body. If the body be of simple geometric shape, the
moment of inertia can also be computed.

In elementary dynamics it is shown that a body of moment of
inertia K when acted upon by a torque L proportional to the
angular displacement from the equilibrium position, vibrates with
simple harmonic motion of rotation with the period

T=21l' —‘%’)

where ¢ is the amplitude of vibration.

. L
Whence, K= (— m) T

Since the ratio of torque to displacement is constant, the quan-
tity within the parenthesis is constant. Representing it by the
symbol ¢, the above equation may be written

K = cT. (83)

That is, in the case of any rigid body or system of bodies vibrating
freely with simple harmonic motion of rotation, the square of the

.
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period of vibration is directly proportional to the moment of
inertia of the body. ‘
MANIPULATION. — A convenient form of apparatus for this
experiment consists, Fig. 42, of two horizontal disks connected
by three thin vertical rods. From
the center of the upper disk rises a
short spindle for attachment to the
supporting torsion wire. The body
whose moment of inertia is required
‘can be placed on the lower disk in
- such a position that the line about
which its moment of inertia is to be
determined coincides with the axis of
the supporting wire. The positions
of the masses MM are then adjusted
until the axis of vibration of the sys-
tem passes through the center of the
Fra. 42. two disks. Below the vibrating sys-
tem is a device by means of which the apparatus can be set into
torsional vibration with very little swinging motion.
If the moment of inertia of the apparatus with respect to the
axis of vibration be K, and the period be T, then (83),

Kl = CT;z. (84)
Now add to the apparatus a body which has a moment of

inertia K, with respect to the same axis. If the period of vibra-
tion now be Tz, the moment of inertia of the system is

K, + K, = T (85)

Combining (84) and (85) by eliminating ¢, we find the moment of
/inertia of the apparatus to have the value

Ko () @

T -T2

Now substitute for the body of known moment of inertia the
body whose moment of inertia is required, and find the period
of vibration as before. If this period be denoted by T we

\
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find by the method of the preceding paragraph that the moment
of inertia K; of the body under investigation is

Tl32 — le) .

K=K (M

Whence, substituting the value of K, from (86), the moment of
inertia of the body under investigation is found to have the value

Tlsz — le) .

&=mQ?Iﬁ

@87
In finding each of these required periods of vibration, first
~ get the pointer P directly in front of one of the three vertical rods
while the apparatus is at rest. Then set the apparatus into tor-
gional vibration with an amplitude of about 90°. Be careful that
there is no translational motion. At same instant when the
given vertical rod passes the pointer start a stop watch. Count
50 complete vibrations and stop the watch. From these data
compute the time of one vibration.

Take all of the required linear dimensions with a vernier caliper
and make all weighings with a balance of moderate sensitivity.

Compute the moment of inertia, (a) from the observed periods
of vibration, and (b) from the mass and dimensions of the given
body. ‘ '

Exp. 20. Determination of the Tensile Coefficient of Elasticity,
or Young’s Modulus, by Stretching

THEORY OF THE EXPERIMENT. — Read Art. 24. From the
definition of Young’s modulus, it follows that if L denotes the
length of a wire, d its diameter, and e the elongation produced by
a force F, then the Young’s modulus of the material composing
the wire is, (28),

E=—7F++=—%- (88)

If the force is measured in dynes and the other quantities in
centimeters, the value of £ will be in dynes per sq. cm. The
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object of this experiment is to determine the value of Young’s
modulus for a metal in the form of a wire.

Of the quantities which have to be measured, the only one that
it is difficult to get with moderate accuracy
is the value of the elongation e. One means
of finding this is by an optical lever. The
upper end of the wire is securely clamped to
a rigid support (Fig. 43), and to the lower end
of the wire is fastened a rectangular piece of
metal S terminating in a hook for the attach-
ment of a weight pan H. This rectangular
piece of metal is kept from twisting or
swinging by being let through a loosely fit-
ting rectangular hole in a second bracket
fastened to the wall. One leg of the optical
lever is supported in the axis’of the wire by
the rectangular hook, while the other two
legs are supported by the bracket.

In Fig. 44, mnb is the optical lever with its
mirror vertical, o is a horizontal telescope,
and oo’ is a vertical scale divided into centi-
meters and millimeters. If the wire be
stretched by a small amount, the optical lever
will assume the position m'nb’ making an
angle @ with its previous position. When
light is reflected from a mirror, the angle
of reflection equals the angle of incidence.
Whence o'a’s = oa’s = 6. Consequently oa’o’
= 20. The elongation e is the vertical
distance through which the point m moves
in passing to the position m'. So that

e =m'nsinf = mnsin0,

Now since the small distance aa’ is negligible in comparison
with ao,

- ’
tan20=22.
ao
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When 6 is small and is expressed in radians

tan260 =260
and sin 0 = 0.
That is, e[=mnsin0]‘=,mn0‘——7mg'oo-
ao

On putting this value of e in (88) it becomes

8FL ao .
Txd-mn o0 1(89)
MANIPULATION. — See that the wire is straight and carefully
suspended. Place three or four kilograms on the supporting

Fia. 4.

bracket directly over the clamp holding the upper end of the
wire, and one kilogram on the pan below. Put the optical lever
in place and the telescope and scale a meter or so from it, clamp
the scale vertical, and adjust the height of the telescope until it
is at about the same level as the optical lever. Move the head
to such a position that the image of the telescope is seen in the
middle of the mirror of the optical lever. If the eyes are not
now at the level of the telescope, turn the thumb screw beneath
the front legs of the optical lever until the image is seen when the
eyes are at the same level as the telescope. This makes the
mirror vertical. Focalize the telescope as directed in Art. 14.
Read the telescope, move all the masses from the supporting
bracket down to the weight pan, read the telescope, move the
masses back to the supporting bracket, and read the telescope
again. If the elastic limit has not been exceeded, the last reading
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should be about the same as the first. Repeat two or three
times. Make about five determinations, each one after moving
the telescope and scale a few centimeters farther from the optical
lever.

Measure the diameter of the wire in some half dozen places
with a micrometer caliper. Determine the length mn of the
* optical lever by pressing the three feet upon a piece of cardboard,
connecting the prick points made by the two front feet by a fine
line, and then measuring the normal distance between the re-
maining prick point and this line by means of a millimeter scale.
"Determine the length of the wire with a meter stick, and the
loads added to the weight pan with a platform balance weighing
to grams.

For each distance ao find the average deflection 0o’ and cal-

culate %;. Find the average of all the values for poed and by

(89) calculate E. Give the result in dynes per sq. cm., in Kg. wt.
per sq. mm., and in lb. wt. per sq. in.

Exp. 21. Determination of the Tensile Coeﬁcxent of Elasticity
or Young’s Modulus by' Bending

THEORY OF THE EXPERIMENT. — Read Art. 24. Consider a
rectangular rod of length L’, breadth B, and depth D, fixed at one
end and weighted at the other. The rod will become bent as in
the figure. The upper portion of the rod is extenided and the
lower portion compressed. Since the rod is strained by a longi-
tudinal stress, and since Young’s modulus is defined as the ratio
of the longitudinal stress to the longitudinal strain, Young’s
modulus may be determined from an observation of the amount
of bending which a given force produces in the rod. The object
of this experiment is, by the method of bending, to determine the
Young’s modulus of the material composing a rectangular rod.

Imagine the unstrained rod to be divided into laming by a series
of planes normal to its length. Then let the rod be slightly bent
by a force F’ applied downward at the end of the rod, and let
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some lamina abed be thereby so distorted that its sides ad and be
make with each other a small angle df. The restoring stress in
this lamina produces a couple which tends to bring the rod back
- to its undistorted position, and is prevented from doing so only
by the moment of the distorting force F’.

The first step in the development of the formula for determin-
ing the Young’s modulus of the rod is to find an expression for
the restoring couple due to the stress in this lamina. Halfway
between the upper and the lower .
surfaces of the rod is a neutral =
surface gh which is neither ex-
tended nor compressed. Any
layer above this surface and par-
allel to it will be extended, while
one below will be compressed.
Consider the thin layer vy at
& distance z from the neutral
surface, which has a depth dz and
breadth B equal to that of the
rod. The original length of this
layer .was dz. From the figure Fro. 45.
its elongation is seen to be zdd.

The cross section is Bdz. From (28) the force of restitution
in the direction of the length of the rod developed in the
layer vy is

L]

Young’s modulus X cross section X elongation _ EXBdeXzds
original length dz

Since the lever arm of this force is z, the torque, <.e., the moment of
the force of restitution developed in this layer, is

EB.d§-2dz
dz

The restoring torque developed by the straining of all the layers
above the neutral surface is the sum of the torques developed in
the various layers. Thus, integrating the above expression be-
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tween the limits z = 0 and z = } D, the restoring torque due to all
the layers above the neutral surface is seen to be

I= EB.d§-D*
24dx
Now the resultant moment of the restoring forces below the
neutral surface equals the moment of those above. It follows
that the whole torque due to the strain in the given lamina is 2 L.
Since the bar is in equilibrium, this restoring couple equals the
distorting moment of F’ about e. If the rod be bent only slightly,
the moment of F’ about e is so little smaller than F'z (Flg 45) that
we may write »
E’__1192Dd3$d0 = F'z. (90)
The next step is to find the depression [ of the end of the rod in
terms of df. At a and b draw two lines tangent to the curved
surface of the rod and equal in length respectively to the arcs
an and bn. Then the angle between these tangents equals the
angle df between ad and be. Denoting the depression of the end
of the rod due to the bending of the given lamina by dI, we can
write il

do =Z.
z

Substituting this value in (90) we have for the depression of the
end of the rod due to the distortion of the given lamina abed,

. 12F
dl—‘EBD3

z?dz. . (91)

The depression ! of the end of the rod due to the distortion of all
the lamin® is the sum of the depressions due to the separate
lamineg. Thus, integrating (91) between the limits x = 0 and
z = L', we have for the total depression of the end of the rod

1T 13
154FL.

*EBD® 62)
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If the rod, instead of being fastened at one end and loaded
at the other, is supported on two knife edges and loaded in the
middle, the bending is practically the same as if it were fastened
at its middle point and had acting upward upon it at each end
a force half as great as the load actually applied. Let the dis-
tance between the knife edges be L = 2 L', and the force applied
be F = 2 F'. Then on substituting for L’ and F’ in (92), we get

o FD
"4 EBD?
. F I3
or . E= 4—353 . T' (93)

It can be shown that the above approximate result is accurate
to within about 0.03 per cent if the depression of the rod is not
more than one hundredth as great as the length of the rod. Ac-
curacy so great as this is seldom required in a determination of
Young’s modulus, and, besides, the error introduced by the method
of measurement is usually greater than that due to the approxi-
mation.

MANIPULATION. — Measure B and D at a number of points
along the rod by means of a micrometer caliper. Measure L, the
distance between the two knife edges, with a meter stick. Place
the rod on the knife edges and suspend from the middle point a
pan containing sufficient load to bring the rod into good contact
with the knife edges. The flexure ! of the rod produced by an
additional load F may be measured by means of a microscope
fitted with an eyepiece micrometer, or by means of a micrometer
screw placed above the center of the rod and moving in a nut
fastened to a rigid support.

If an eyepiece micrometer be employed, Fig. 46, it must first
be standardized as described in Art. 12. The microscope is then
focalized on the end of a necdle attached to the saddle that sup-
ports the binding load. The length of the microscope tube must
not be altered after the eyepiece micrometer has been standard-
ized.

If an ordinary micrometer screw be used, Fig. 47, the instant
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when the screw comes into contact with the rod can be determined
either by means of a telephone in a battery circuit including the
rod and micrometer screw, or by observing the image of some

Fia. 46.

fixed object in a small mirror one end of which rests upon the
- rod while the other end rests upon an adjacent fixed support.
Some micrometer screws are provided with a
ratchet which causes the head to slip when the
end of the screw presses against any object.
With such a micrometer screw no device is
necessary to indicate when the screw is in con-
tact with the rod.

By means of either an eyepiece micrometer
or a micrometer screw, take a reading when the
rod is not loaded and again when loaded. Remove the load and
read again. The amount of load to be used will depend upon
the size of the rod. Take similar readings for three different
loads. Repeat twice, both to be sure that the elastic limit has
not been exceeded and to get a number of determinations of the
flexure. Then alter by a few centimeters the distance between
the knife edges, and repeat. Take three different lengths, and
for each length, using the average flexure for that length, calculate

Fig. 47.

3 3
the ratio Pl— Find the average of the five values of IT', and by

(93) calculate the Young’s modulus of the rod. Express the result
in dynes per sq. cm., Kg. wt. per sq. mm., and lb. wt. per sq. in.
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Exp. 22. Koenig’s Method for the Determination of Young’s
Modulus of a Rod by Bending

THEORY OF THE EXPERIMENT. — Read Exp. 21. If the rod
be so stiff that the depression of the middle point is small the
depression can be determined by the
following method with a greater degree
of precision than by the direct methods
used in the previous experiment.

Consider a straight rectangular rod of
breadth B and depth D resting upon two
knife-edges distant from one another
by a length L. When a force F is
applied perpendicularly to the length
of the rod at a point midway between
the two supports, the rod is bent into
a curve which is approximately a circle
80 long as the bending is not excessive. In Fig. 48, the angle 6
between the normals to the rod at the points of support has the’
value

F1a. 48.

0=L
r

v (94)

where r is the radius of the circular arc into which the rod is bent.
In the triangles abe and dbe

(ae) _ (eb)

(eb) ~ (de)

or, denoting the deflection de of the middle point of the rod by I,

_ (eb)
(eb) 1’
21l = (b= (g)z
LI

r=37
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On substituting this value in (94)

L. 81
0[—;]—.L

or l—-q-I-J
' 8

On substituting this value in (93) we obtain

_ FL3 7. 2FI2 |
E [”‘- 7 BDsz] = 9BD* (95)

The value of  can be easily determined by experiment. If
two mirrors be fastened rigidly to the rod directly above the .
supports, then when a force is applied to the middle point, the
inclination of the mirrors to one another will change by an amount
equal to the change of the angle 8 between the normals to the
" rod at the points of support.

i = Tem—— 20
T

Fia. 49.

Let a telescope and a vertical scale be placed facing the mirrors
as shown in Fig. 49. Let the deflection of the mirror m, produced
by the bending of the rod be denoted by ¢, the distance between
the two mirrors by L, and the distance from the scale to the
mirror mz by d.

When the mirrors are in the position of the figure, the light
that enters the telescope traverses the path XYZT. If the mir-
ror m, be tilted through the angle ¢ while the mirror m,; remains
stationary, the light that enters the telescope travels the path
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PQZT. Since when a mirror is tilted through a certain angle,
the reflected ray is tilted through twice that angle, the angle QZY
=2¢.
From the figure,
» s
tan2 ¢ = m:

where s is the difference of scale reading due to the tilting of m;.
Since the angle 2 ¢ is always very small, we may write

s=2¢(L+d).

But since a deflection of the rod causes a tilting of both mirrors
through the same angle ¢, the total change in the scale reading, S, is

8=2¢(L+d)+2¢d=2¢(L+24d).
From Fig. 48,6 = 2¢4. Consequently,

. S
b=T¥z2d

" On substituting this value in (95), we obtain

212 (L + 24d) (g)

E=—%p 5)

(96)

MaNIPULATION. — Measure B and D at a number of points
along the rod by means of a micrometer caliper. Measure L, d,
and S with a meter stick. Find the flexure S for three different
loads F. Calculate Young’s modulus for each load. Express
the result in dynes per sq. cm., Kg. wt. per sq. mm., and lb. wt.
per sq. in.

Exp. 23. Determination of the Simple Rigidity of a Wire, or
Rod, by the Static Method

" THEORY OF THE ExpERIMENT. — Read Art. 24. The object of
this experiment is to determine the simple rigidity of a cylindrical
wire or rod.
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Consider a cylindrical rod or wire of length ! and radius r with
one end fixed and the other end twisted through an angle ¢.
This will cause an element of the surface as AB to be displaced to
4 AB’'. From the diagram the shearing strain in the

N ’

outside layer of the cylinder is B—fi . Andsince BB’

= ¢r, it will be seen that at every point of the wire
distant r, from the axis and ! from the fixed end,

there is a shearing strain equal to ¢_lr§ . If Sdenote
the shearing stress developed at a point distant r,
from the axis and ! from the fixed end, and u the
simple rigidity of the wire, it follows from the defi-

nition of simple rigidity that

B
a4 _5.
# T on
Fia. 50. l
Whence, S == : 97

This is the value of the shearing stress at any distance r, from the
axis of the wire.

The next step is to find what torque would be needed to keep the
wire twisted as it is in the figure. Imagine the end of the rod to
be divided into » thin concentric rings of width dr;. Fix the at-
tention for a moment on the ring of radius ry, Fig. 51. Now since
the area of cross section of this elementary
ring is 2#r; dri, the restoring force set up
in this particular element has the magni-
tude ‘

2 1l'[l/¢7‘12 dr1 .
l Fia. 51.

Since this force is tangent to a circle of radius r,, the torque that
must act upon this elementary ring to maintain the twist is

dL = — 21r#¢l?'18 dTl,
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where the negative sign is used because the restoring torque
and the displacement are in opposite directions. The total
torque developed in all the rings of which the rod is conceived to
consist is obtained by integrating the above expression between
the limits r, =0 and r, = r. Thus, the

torque L that must be applied to the end

of the wire to keep it twisted is

4 4
L= - —"gg‘f, (98)

where ¢ is the angle of twist expressed in
radians and d is the diameter of the rod.
In the method here to be employed for
determining L, there is fastened to the
lower end of the rod a 'massive disk which
has its upper face graduated in degrees,
and has around its edge a series of pins
placed 20° apart. In front of the disk
and in back of it are two horizontal scales.
The twisting couple is applied to the disk .
by horizontal forces acting tangentially
at its circumference. Equal masses m
are suspended by cords which pass in
front of the two horizontal scales. Tied
to each supporting cord at about the level
of the pins in the disk is another short
cord which has at its other end a loop
that can be slipped over one of the pins,
thus twisting the graduated disk through
an angle which can be read by means of
a pair of pointers fixed above it. Fia. 52.
Let the forces in the horizontal cords
be denoted by F; and F.. Then from the diagram (Fig. 53)

h
tan w = oy (99)

And since F, and mg are perpendicular to each other, and F;, mg,
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and the tension in the supporting cord are a system of concurrent
forces in equilibrium,

"T,lg = tan w. (100)
1

From (99) and (100) it follows that
F ="

k

If the horizontal threads are looped
over diametrically opposite pins, and
if the points from which the upright
cords hang are equidistant from the
plane of the wire and supporting
bracket, F; = F». If we drop the
subscripts and denote by D the
diameter of the disk increased by
twice the radius of the horizontal

%: = cords, the moment of the couple that
[ tends to turn the disk farther from
MM  its equilibrium position is of; the
- ® magnitude
i zD
Fia. 53. FD=-"82. (101

When the disk is in equilibrium, the torque L that must be
applied to the end of the wire to keep it twisted is equal in magni-
tude to FD. Whence, from (98) and (101),

mugdt _ mgzD
321 kR

(102)

Finally, writing in place of ¢ radians its value 3%—0 « 27 radians,

where 8 is the number of degrees in ¢ radians,.(102) gives

_5160gDl mz.

=Tadh B (103)
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MantruLATION. — Carefully measure the diameter of the rod or
wire in at least ten places with a micrometer caliper. Take the
diameter of the disk with a vernier caliper. Measure h and 1
with a meter stick or steel tape. Use such loads and loop the
cords over such pins as to get a series of some half dozen values
for B, each somewhat larger than the one before it, but the largest
not much more than 90°. The loads in the two pans must be equal,
and the cords should be looped over pins far enough around to give
fairly large values for x. In getting each end of the distance z,
record the reading on each side of the cord and use the mean as being
mz
’ﬁ_,
and by (103) find u. Express the result in dynes per sq. cm., Kg.
wt. per sq. mm., and lb. wt. per sq. in.

the position of the middle of the cord. Find the average value of

Exp. 24. Determination of the Absolute Coefficient of Viscosity
of a Liquid by Poiseuille’s Method

THEORY OF THE EXPERIMENT. — Read Art. 25. Consider a
column of liquid flowing through a tube of length I, and with a
radius, R, so small that there will be no eddies in the liquid column.
Imagine this column to be made up of a large number of concentric
hollow cylinders of very small thickness Ar. Suppose that all of
these hollow cylinders but one could be made solid, so that there
would be a solid rod surrounded by a thin layer of the fluid, and
this again surrounded by a solid tube. While the rod was moving,
two forces would be acting on it — one due to the viscous resistance
in the tube that was still liquid, tending to retard the motion of the
rod, and the other due to the difference between the pressures at
the two ends of the rod, tending to accelerate it. If the radius of
the rod were r, the viscous resistance in the liquid tube surround-
ing it would, by (29), be

P [_ 74 (81—'82)_]_11'271'1'1-As.
1 z n Ar

And if p denote the difference between the pressures at the two
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ends of the rod, the force to which this difference in pressure would

give rise would be
Fy, = prr3.

If the rod were moving uniformly, the magnitude F, = F,, that

is,

or ds=pr'dr

whence by integrating,

l"%.

+ C (a constant).

..y;

7l

The constant of integration can be readily obtained.

r=R,s =0, and
- _ PR '

- _DPR,
¢= 49l

Consequently the speed of flow of the given cylinder is

When

(104)

We are now in position to find the value of the volume of liquid
.V, discharged from the tube in time ¢. The volume of liquid dis-
charged in time ¢ by the cylindrical element of radius r and thick-

ness Ar, moving with speed s, is

AV = AA.s-t
=2mrAr.s-t
pr _ pR?
= 2arAr. t(4 1”& l)
aptrdr _ xpRYrdr
dv = 21y 21y
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Integrating, the value of the v‘olume discharged by the entire tube
in time ¢ is found to be

apt [ xpR%
V=mﬁﬁdf—Th- Brdr.

That is, -

_ 7D

=S (105)
If the pressure be due to a column of liquid of height k and density
p, then p = pgh. On putting this value in (105), and
solving for n, we have

_ 7pghR* ¢

dynes per sq. cm. per unit velocity gradient.

It should be noticed that in deriving (106) it has
been tacitly assumed (a) that the viscous resistance
to the flow of the liquid is uniform throughout the
entire length of the tube, (b) that the lines of flow of
liquid in the tube are parallel to the axis of the tube
throughout its length, (¢) that no part of the energy
supplied to the liquid in the tube appears as energy
of motion, (d) that there is no effect at the outlet
due to surface tension. The conditions demanded
by (a), (b), and (c).can be realized to a sufficient
degree of approximation by using a tube that is both
long and of narrow bore and having the liquid flow
through at a uniform rate. Condition (d) is met by
immersing the discharge orifice in a portion of the
liquid having a considerable free surface.

MANIPULATION. — A viscometer that fulfills the
- above conditions is illustrated in Fig. 54. The
vertical tubes AB and CD are of uniform bore and are graduated
in millimeters throughout their length. The capillary tube BE is
straight and of uniform circular bore. In order that the tempera~
ture of the liquid being investigated shall be constant and definite,
the viscometer is supported in a suitable water jacket supplied with
& thermometer.

Fia. 54.
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The length [ of the capillary tube is measured with a meter stick.
The mean radius of the bore is determined by measuring the length
of a known mass of mercury at different positions along the length
of the tube. An amount of mercury sufficient to make a thread
about four centimeters long is drawn into the tube by suction
applied at the opposite end, and this thread is measured in length
at different equally spaced positions along the length of the tube
by means of a dividing engine. Knowing the mass of the mercury
thread and the average length, the average radius of the bore
of the tube is determined. A tube with a bore departing very
much from uniformity must be rejected in determining the abso-
lute coefficient of viscosity.

In order to determine the V in (106) it is necessary to calibrate
the lower part of the tube CD. This may be done by putting
a solid stopper at E, removing the one just above C, and drop-
ping into CD known volumes of water from a burette. After
each small volume of water is dropped in, a reading is made of
the top of each water column — the one in CD and the one in the
burette. From these readings a curve is to be plotted coérdinat-
ing the volume of water in CD with the reading of its surface on
the CD scale.

After thoroughly cleaning and drying the parts of the viscometer,
it is assembled, a quantity of the liquid under investigation is in-
troduced, and this liquid column run back and forth until it is free
of air bubbles and the tubes are coated with a thin film of the
liquid. The quantity of liquid introduced should be such that
it will form a column extending from a point near the upper end
of the tube AB to a point near the lower end of CD.

With all the rubber stoppers tight, and the stopcock S open, run
the liquid into the position mentioned above, close the stopcock,
and place the viscometer in the water bath. After the temperature
has become constant and of the desired value, with stop watch in
hand open the cock S, and when the meniscus in A B reaches some
previously selected scale division X, start the watch; when the
meniscus reaches some second selected scale division X', stop the
watch. This gives the value for ¢ in (106).

When the upper meniscus was at X the lower meniscus was at
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some point y, and when the upper meniscus had fallen to z’ the
lower meniscus had risen to some point ’. The positions of y and
y’ can be obtained by opening S and again running the liquid into
AB to the points z and z’. The mean of the vertical distances
between z and y, and z’ and ¥/, is the value for h in (106). These
distances can be obtained by the scales engraved on AB and CD.
p can be obtained by means of a balance and a 5 cc. pipette. V is
obtained by finding from the curve already plotted the volume of
water that would be held between the marks y and y’.

At least five sets of observations should be taken and the average

value for %, used in (106) to get n at the temperature of the experi-

ment.

Exp. 26. Determination of the Absolute Coefficient of Viscosity
of a Liquid by the Rotating Liquid Method

TaEORY OF THE EXPERIMENT. — Read Art. 25. This method
is based upon a determination of the couple required to prevent
turning of a cylinder suspended in a rotating coaxial cylinder filled
with a sample of the liquid under test.

Let AA’ and BB’, Fig. 55, represent transverse sections of the
two cylinders, the space between them being filled with a sample
of the liquid under test. Let the outer
cylinder be rotated about the common axis
with a constant angular speed w, while the
inner cylinder is prevented from rotating
by the restoring torque developed in a wire
suspending it. Since there is no slip between
the cylinders and the liquid in immediate Fia. 55.
contact with them, and since there is no
abrupt change of velocity between contiguous particles of a liquid,
each particle of the liquid must be rotating about the common
axis of the cylinders, and the angular speed of the successive
layers of liquid must fall off from w at the outer cylinder to zero
at the inner cylinder.

Consider the motion of the liquid particles at an imagi

’ e 282038
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coaxial cylindrical surface of which CC’ represents a right section.
The speeds of the particles on the outer side of this surface will be
greater than that of the particles on the inner side. Let s’ denote the
velocity gradient normal to this surface. Then if r be the radius
and ! the length of this cylindrical surface, its area is equal to
27rl. And since each unit of area will be acted upon by a tan-
gential stress, (29), equal to ns’, the torque developed about the
axis through O is measured by

(s’ - 2xrl) r = 2xr¥ys’.

Since the liquid between AA’ and CC’ is in steady motion, the
forces acting on it must be in equilibrium. The cylinder A4’
must therefore exert a torque

L. = 27rtlng’, (107)

tending to retard the rotation of the fluid in contact with it; and
an equal but oppositely directed torque must be exerted on the
stationary cylinder. This reacting torque must be balanced by
the restoring torque set up in the suspending wire when the inner
cylinder is in equilibrium. If the modulus of torsion r of the sus-
pending wire be known (Z.e., the torque per unit twist), and the
twist or angular displacement ¢, the restoring torque L can be
obtained from the relation

L = 1¢. (108)

To obtain a measure of the velocity gradient s’, consider two
adjacent points on the radius OB equidistant from and on opposite
sides of the surface CC’. Let the distances of these points from
the axis O be represented by r, and 7, and let their angular veloci-
ties about the given axis be represented by w, and ws, respectively.
The difference between the linear speeds of the liquid at these
points is (wers — wars). This difference may be considered as
made up of two parts,

Wy — Wq

(were — Wala) = E%_-;“% (re —7a) + — (ro + 74).
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The first term of the right-hand member expresses a difference
in the linear speeds of two points moving with the same angular
_ speed 4 (w» + wa). The second term expresses a difference in the
linear speed of two points moving with different angular speeds
about a common axis. When the angular velocities are the same,
there is no angular displacement of one point relative to the other.
Consequently no shearing stress is involved in the first term. The
difference of linear speed which involves a shearing stress is given
by the second term. Hence, from the definition of velocity
gradient, (Art. 25),

s,[= s:,—s..]='wa—wa (ot 1a) _ (wb—wa),.
T — Ta m—re 2 Tn—1a/) "’

whence, from (107), the torque acting on the cylindrical surface is

— Wsq
= 21‘7"l11 e
2xly _ s — T4
or Lc ('wb wa) = P

Multiplying the numerator of the right-hand member by % (v + 74)
and the denominator by the equal quantity r,

27l 17 — 7.2
1r11(wb_ =_Tbr‘1‘.

If we now let r, differ only infinitesimally from 7,, we may write
12 = r.rp and the above equation becomes

4 7ly
L.

o2 11
(wb—w)=r"ra%: =R T (109)

Now consider the distance AB between the two cylinders, Fig.
55, to be divided into n cylindrical elements of infinitesimal thick-
ness. On setting up an equation of the form of (109) for each of
these cylindrical elements extending from ro = OA = R; to 1, =
OB = R,, and adding these equations, we obtain

4 7l 1 1

L (w»—’wo)—;g—;,:;'
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Whence, the torque acting on the cylindrical surface of the sus-
pended cylinder has the value

_ 4l (0, — wo)
S Y
. r02 ruz
Substituting for r, and r, their values R, and R, respectively, and
putting w, — w, = w, we have

2
L= (4 .

For a particular apparatus, the quantity within the parenthesis is a
constant qua,ntlty which will be represented by ¢. Then

Le = cwly. (110)

Representing the torque acting upon the ends of the suspended
cylinder by L., the total torque may be written L = L, + L..
Whence, (108) and (110),

L= r¢] = cuwly + L. (111)

The experiment can be arranged so that the value of L. need not
be determined. The method consists in measuring the couple
developed on a cylinder of length I, when the container is rotating
at a known speed w, and then, with the container rotating at the
same speed, measuring the couple developed on a second cylinder
exactly like this one except that the length is l,, Representing the
deflections of the two cylinders by ¢, and ¢», respectively, we have
for the torques in the two cases,

L, = r¢y = cwlym + L,
Ly = 7¢p = cwlyy + L,

from which L, can be eliminated and the coefficient of viscosity
obtained.
7 (¢2 — 1)
___(lz —Tyow (112)"

dynes per sq. cm. per unit velocity gfadient.
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MANIPULATION. — In the apparatus used in this experiment,
Fig. 56, the containing cylinder can be rotated about its geometric
axis at any constant angular speed from 40 to 100 revolutions per
minute. The speed can be deter-
mined either by a tachometer or a
revolution counter and stop watch.
The inner cylinder is suspended
coaxially with the outer cylinder by
means of a thin wire of steel or
phosphor bronze. The upper end of
the inner cylinder should be two or
more centimeters below the surface
of the liquid under test.

In the case of a liquid of small
viscosity the deflection will be
small even though the suspending
wire be thin. These small deflec-
tions are best measured by means
of a mirror m attached to the sup-
porting rod, and a horizontal tele-
scope and scale not shown in the
figure. In the case of such viscous substances as glues, clays,
and glazes the deflections will be large even when a much larger
suspending wire is employed. Under these conditions the mirror,
telescope, and scale may well be replaced by a circular scale at-
tached to the supporting rod and a fixed index pointer attached to
the frame of the apparatus.

By means of a caliper and steel scale find the diameter of the
inner cylinder and the inside diameter of the outer cylinder. The
value of ¢ is then computed from the expression

Fia. 56.

47 R?R7?
= Ri-RF (113)

The lengths of the two suspended inner cylinders are measured
by means of a steel scale.

The, value of the modulus of torsion 7 of the suspending wire



104 FUNDAMENTAL MEASUREMENTS

remains to be found. In elementary dynamics it is shown that
the period T of a body oscillating with a simple harmonic motion
of rotation is given by the expression

T = 21r\/ I_g’

where K is the moment of inertia of the body with respect to the
axis of vibration, and L is the restoring torque developed by an
angular displacement 6. In the present case, the restoring torque
acting upon the suspended cylinder is due to the rigidity of the
suspending wire. Since from (108) L = 76, it follows that

T = 21r\/ Ié (114)
and r= ‘112,_,,25- (115)

It follows that, if we know the period and the moment of inertia
of the suspended cylinder, the value of the modulus of torsion can
be computed. Usually, however, the attachinent of the wire to
the cylinder is by means of a clamp of such shape that the value of
K cannot be computed. In this case, the following experimental
arrangement will render unnecessary any knowledge as to the value
of K.

Set the suspended cylinder into torsional vibration in air and
find the period 7. Then

T = 2#\/3-
T .

Place on top of the cylinder a ring of known moment of inertia K;,
and find the period of vibration, T, of the system now having a
- moment of inertia K + K,;. In this case,

1= 20/ KEE,
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Eliminating K from these equations, we have

_ 47K, |
L

After determining the modulus of torsion, r, of the wire by either
(115) or (116), suspend the short cylinder in the liquid under test
and measure ¢, for each of several angular speeds w. Replace this
cylinder by the long one and record values of ¢, for the same angu-
lar speeds. The speed is regulated by adjusting the series resist-
ance in the motor circuit. All of the data are now at hand for
substitution in (112). _

Care should be taken that the axis of the suspended cylinder and
the axis of the containing vessel coincide with the axis of rotation.
The bottom of the suspended cylinder should be about two centi-
meters above the bottom of the containing vessel. In each case
the cylinder should be covered with the specimen under test to a
depth of about two centimeters.

(116)



CHAPTER III
OPTICS

26. Light Units. — The total visible energy emitted per
second by a luminous source is called the total flux of light. For
purposes of comparison, the light source used as a standard is a
lamp burning amyl acetate devised by Hefner. The unit of light-
flux is the light-flux emitted in one space radian by a Hefner lamp
and is called the hefner lumen. Since there are 4 = space radians
in a complete sphere, the total light-flux from the Hefner lamp is
4 7 hefner lumens.

The intensity of a point light source is measured by the light flux
emitted per unit solid angle. Thus, if the total flux emitted be F,

' F

I= i 117)
This equation shows that the intensity of a point light source will
be unity when it emits a flux F = 4 7 hefner lumens. This is the
light-flux of a standard Hefner lamp. Consequently, the unit
intensity of a point light source is called the mean spherical hefner.

The light-flux per unit area of cross section of the beam is called
the light-flux density, or the illumination, of the stream of light.
Thus

Q!'&j

E= (118)
From this equation we derive a unit of illumination — one hefner
lumen of light-flux per square meter of area. This unit is called
the hefner-lua. )

If we have a point source, then at a distance r the illumination

would be
F F
(-0
106
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Whence, from (117),

= rl, (119)

From this equation we see that at a distance of one meter from a -
- point source of luminous intensity one spherical hefner, the illumi-
nation is unity. For this reason, the unit of illumination is also
called the hefner-meter.

Before the Hefner standard lamp was devised, candles were
commonly used as light standards. The standard British candle
was one that burned 120 grains of spermaceti per hour. On
account of the lack of uniformity of even the most carefully made

candles, they are now seldom used in actual measurements of light
quantities. But as actual candles were employed for a long time,
light quantities are still often expressed in terms of candles. Thus,
luminous flux is expressed in candle lumens, luminous intensities in
" mean spherical candles, and illuminations in candle-luz or candle-feet.
In transforming light quantities expressed in terms of the Hefner
lamp into the corresponding quantities expressed in terms of the
standard candle, it has been agreed to take ten-ninths spherical
hefners to equal one spherical candle. A luminous intensity of
ten-ninths of a spherical hefner is called an international spherical

candle. : )
A standard candle and a Hefner lamp are shown in Fig. 57.

Fia. 57.
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27. Lamps used as Secondary or Working Standards. — On
account of flickering and low intensity, the Hefner amyl acetate
lamp and the standard candle can be used only with great care.
For the measurement of the luminous intensity of flames, the
10-c.p. Harcourt pentane lamp has been adopted by the London
Gas Referees, and is in extensive use. In this lamp, PL, Fig. 106,
the fuel is pentane vapor. The pentane flame is of about the color
of illuminating gas flames and is much more steady than either the
Hefner flame or the candle flame. The lamp, however, has the
disadvantages of bulk, complicated construction, initial cost, and
expense of maintenance. As it cannot be constructed to give an
exact predetermined illumination, it must be calibrated by com-
parison with a Hefner lamp or standard candle.

After an incandescent lamp has been “aged ”’ by being operated
for some hours at an excess voltage, it will maintain for many hours
a constant luminous intensity when operated at a constant voltage.
By changing the impressed voltage, thereby changing the color of
the light emitted, an incandescent working standard can be used
for the photometric comparison of light sources of a considerable
range of color. In calibrating an aged incandescent lamp for use
a8 a secondary standard, a curve is constructed coérdinating either
current or impressed voltage, and luminous intensity expressed in
either hefners or candle power. -

28. Photometry. — The art of comparing luminous intensities
is called photometry. As light-flux cannot be readily measured,
luminous intensities cannot be directly measured by means of the
defining equation (117).

If some standard of comparison be adopted for illumination, the
relation expressed in (119) can be used for the determination of
intensities. Thus, consider two point sources emitting light in all
directions. Let a screen be placed between the two sources and
normal to the line between them. If the intensities of the sources
be I, and I, and the distances of the sources from the screen be
and 7, respectively, then the illuminations on the two sides of the
screen are
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If the screen be placed so that the two sides are equally illumined,
that is, until E; = E,, then,

L _I
1‘12 - T22 )
2
Whence, }: = :—;, (120)

That is, when two luminous point sources equally illumine a screen
normal to the line joining them, the luminous intensities of the
sources are directly proportional to the squares of their distances
from the screen. Though applying rigidly only to point sources,
this relation can be used to a close degree of approximation for
sources so small compared with their distances from the screen
that, at the screen, the wave-fronts are nearly spherical.

29. The Equality of Brightness Method. — To compare
luminous intensities by the principle developed in the foregoing
article, a method is required for determining when two illumina-
tions are equal. This necessitates the adoption of a criterion of
equality of illumination. Two distinct criteria are in vogue.

Now light produces on the retina not only the sensation of color
but also that of brightness. By means of the eye we can form a
judgment whether or not two adjacent light spots of the same color
have the same brightness. By moving relative to a screen two
sources emitting light of the same color, we can adjust the bright-
ness of two adjacent spots on the screen till to the eye they are the
same. And if, after altering the position of one source, it be moved
till the two spots again appear to be equally bright, it is found that
the sources are in the same positions that they occupied when
equal brightness was before observed. Thus we can assume that
two illuminations of the same color are equal when they produce
the sensation of equal brightness. This is the basis of the equality
of brightness method for comparing illuminations.

In using this method for comparing luminous intensities, the
sources are moved relative to a screen till the light spots produced
by them on the screen appear to be equally bright. Then, from
(120), the ratio of the intensities of the two sources equals the
ratio of the squares of the distances of the screen to the two sources.
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The equality of brightness method is satisfactory only when the
two sources are approximately of the same color.

30. The Flicker Method. — It is a familiar fact that the
sensation produced by light persists for a fraction of a second after
the light has ceased to be incident on the retina. The duration of
the sensation depends upon the illumination, but for ordinary
illuminations is about 0.1 sec. For example, if a beam of light of

LN~ N~/ N\

Fia. 58.

ordinary illumination entering the eye be interrupted oftener than
about ten times per second there is no sensation of flickering.

If a steady stream of light from two sources enters the eye along
the same path, the sensation due to the two will be fused into one.
If the light from each source be interrupted regularly a few times
per second, and pulses from one source be caused to alternate with
those from the other on the retina,
the sensation will rise and fall, pro-
ducing a flicker. If the streams be
) - of unequal illumination, the sensa-
tion will rise and fall something as
diagramed in Fig. 58. The speed
of interruption can be increased till

Fia. 59. there is no flicker. But if the illu-

minations of the two beams are

equal, a much lower speed of interruption will suffice to produce

a steady sensation. The presence or absence of flicker at low rates

of interruption is so sharp that it is taken as a criterion of

equality of illumination. Thus, two beams of light which when

interrupted alternately and incident on the same spot produce

a steady luminous field, but which when either is altered in

illumination produce a flickering field, are said to be of equal
illumination.

In one form of apparatus for comparing luminous intensities
by the flicker method due to Bechstein, Fig. 59, light from the two
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sources S; and S., Fig. 60, after being reflected by the diffusing
wedge W, traverses the compound glass prism P,P; and observing
telescope T. The double prism consists of a prism P, fitted into
a circular hole in another prism P, having the edge pointing in the
opposite direction. The telescope is focalized on the faces of the
diffusing wedge.

When the compound prism is in the position shown in the figure,
light from S, that traverses P, is bent to the left out of the field
of view, while the light that traverses P, emerges from the eye lens
of the telescope. Light from S: traverses P, and the eye lens,
while the light from S, that traverses P, is bent out of the field of

=S
*

F1c. 60.

view. On looking through the eye lens one sees a bright circular
. disk due to light from S, surrounded by a bright ring due to light
from S;.

If the compound prism be turned 180° about the axis AX, the
central bright disk will be due to light from S; and the circular ring
to light from S.. By rotating the compound prism by a motor,
the disk and the ring are lighted alternately by S, and S,. In
general the field will flicker. But by moving the photometer, con-
sisting of the diffusing wedge, compound prism and telescope,
_ along the line joining the two light sources, a position will be found
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at which the flicker disappears. At this position the two faces of
the wedge are equally illumined, and the ratio of the luminous
intensities of the two sources can be obtained by (120).

When the motor is at rest, the flicker photometer can be used as
an equality of brightness photometer.

31. Photometer Screens. — There are many devices to aid i in
decldmg when two spots of light are equally bright.

(a) The Ritchie wedge, Fig. 61, is a

> / prism of plaster-paris or other diffusing

; M material placed symmetrically with re-

Fia. 61 spect to the line joining the two light

ha sources. On looking toward the two

illumined faces, equality of brightness can be obtained by moving
the wedge along the line joining the two sources.

(b) The Bunsen screen consists of a grease spot on a piece of
white paper. When the paper is moved back and forward be-
tween two sources, the grease spot will in general appear bright on
one side and dark on the other. When

equally illumined on the two sides, how- > <
ever, the spot will disappear. ‘In order > * I T ~
to see both sides at the same time mirrors

are placed as in Fig. 62. Fia. 62.

(¢) The Leeson disk is similar to the Bunsen screen. It con-
sists of a piece of white cardboard perforated by a star-shaped hole
and each face covered with a piece of white tissue paper. It isused
with mirrors like the Bunsen screen.

(d) The Joly cube consists of two rectangular blocks of paraffin
separated by a piece of tin foil. When placed between two light
sources with the tin foil normal to the line joining them, the two
halves of the cube will, in general, appear unequally bright. At
one position, however, the two halves are equally bright and the
division line between the two halves disappears.

(e) The “Photoped ”’ used by the London Gas Referees is com-
posed of a piece of white paper at one end of a metal tube, Fig. 63,
two adjacent sections of which are illumined by the two sources
under comparison. Light from 8, traversing the rectangular
aperture K illumines the section AB, and light from S, illumines
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the section BC. The length & of the tube is adjusted so that the

illumined areas just meet at B without overlapping. The distance

71 Or 73 is adjusted till the line of separation at B disappears.

~ (f) The Lummer-Brodhun screen is very much used for the
comparison of the luminous intensities of sources of the same color.

4 s %

QW

N

Fig. 63.

Light from the two sources after being scattered by the white
screen S is reflected by the mirrors M, and M, into a pair of total
reflecting prisms p; and p,. A part of the hypotenuse face of
one prism is ground away as shown in ‘

Fig. 64. Light incident on the con- N
tact face will be transmitted by both

prisms, whereas light incident on a part

of the hypotenuse face of either prism M,

not in contact with the other prism

will be totally reflected. Suppose a

ring has been ground off the hypote-

nuse face of p;. Then there will emerge A

from p, a cylinder of light from the Fy
left source and a concentric tube of

light from the right source. The total e
reflecting prism p; serves to direct <1='>
these beams into a telescope T' placed Fic. 64.

perpendicular to the line joining the
two sources. As no light crosses the face of any prism except
perpendicularly, there is no dispersion.

32. The Cardinal Points of a Lens or Lens System. — A lens
or lens system that causes an incident plane wave to emerge as a
convergent wave is called a converging or positive lens or system.
The point toward which a plane wave advancing parallel to the



114 OPTICS

principal axis converges after emergence is called the principal
focus of the lens or system. A lens or lens system that causes an
incident plane wave to emerge as a divergent wave is called a
diverging or negative lens or system. In the case of a negative
lens or system, the principal focus is the point from which appears
to diverge an emergent wave that on incidence was a plane wave
advancing parallel to the principal axis.

There are two plancs normal to the principal axis of a lens or
lens system, called *principal planes,” which possess the property
that the prolongation of any incident ray meets the first, and the
prolongation of the corresponding emergent ray meets the second,
at points equally distant from the principal axis. The points
where the principal planes are cut by the principal axis are called
the principal points of the lens or system. There are a pair of
principal points for light of each color.

The principal focal length of a lens or system is the distance
between the principal focus and the corresponding principal point
of emergence. .

In the case of any lens or system there are two points, called
nodal points, which have the property that if incident light be
directed toward one, the emergent light will proceed in a parallel
direction from the other. If parallel light be incident on a lens or
system, the direction of the emergent light will be unaffected by
a rotation of the lens about an axis through the nodal point of
emergence perpendicular to the principal axis.. This furnishes a
convenient experimental method for locating nodal points.

The principal foci, principal points, and nodal points constitute
a system called the ‘“cardinal ”’ points of the lens or system.
Knowing the cardinal points of a given lens or system, the emergent
ray corresponding to any assigned incident ray can be constructed.
In the ordinary case in which the lens is bounded on both sides by
the same medium, the principal points coincide with the nodal
points. The term ‘“equivalent points” is used to denote these
superimposed nodal and principal points.

It follows that if parallel light be incident axially on a lens or
system bounded on both sides by the same medium, and the point
be found about which the lens or system can be slightly rotated
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without changing the position of the focus, the principal focal
length is the distance between the axis of rotation and the principal
focus. The principal focal length of a single lens is different for
light of different colors as well as for different parts of the lens
traversed by the light. For a lens having large aberrations, the
principal focal length is taken as the distance from this axis of
rotation to the circle of least confusion (Art. 35).

33. Chromatic Aberration. — A pencil of light the axis of
which coincides with the principal axis of a lens is called a “direct
axial “pencil.”” A wide pencil is

called a “beam.” B
‘When a pencil of parallel white
light is incident upon a simple R

converging lens, light of different

frequencies is brought to different

foci. The property of a lens in virtue of which parallel light

of different frequencies incident on the same part of a lens is not

refracted to a single focus is called chromatic aberration. Due to

chromatic aberration there will be as many images of an object

as there are component colors in the light. These images will be

of different sizes and will be

at different positions — the blue

< image being the smallest and

\/ nearest the lens, and the red be-

ing farthest away and largest.

For example, with sunlight, if a

white screen be placed in the position of the red image, there will

be superimposed on the red image other images of different sizes

and colors that are not in focus. The result will be a nebulous
spot surrounded by a blue border.

34. Longitudinal Spherical Aberration. — Monochromatic light
advancing parallel to the principal axis and incident near the
margin of a convex lens bounded by spherical faces will be more
refracted than will a direct axial pencil (Fig. 66). Thus, the
focus for marginal pencils is nearer the lens than the focus for
centric pencils. The longitudinal distribution of the focus of an
axial beam is called longitudinal or axial spherical aberration.

F1a. 65.

Fi1a. 66.
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36. Circle of Least Confusion. — Any simple lens has both
chromatic and longitudinal spherical aberration. For such a lens
there is no sharp focus for a beam of white light. In Fig. 67 are
shown two axial pencils of white light incident near the margin of a
convex lens, and also two incident near the center. On emergence,

N
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Fia. 67.

each pencil is divided into its component colors, of which only the
red and the blue are indicated in the figure. If a screen SS’ normal
to the principal axis be placed in the narrow part of the emergent
beam, one will observe a bright spot surrounded by a colored ring.
At a certain position the diameter of
the spot will be a minimum. The
bright spot of smallest diameter is called
the “circle of least confusion.”

In the case of a lens having large
aberrations, the circle of least confusion
is taken to be the fdcus for a wide beam
of white light. ’

36. The Resolving Power of a Lens.
— The image of a point source con-
K sists of a bright central diffraction disk
* surrounded by a series of concentric

Fic. 68. Fia. 69. difh"a.ctiqn ba.n.ds. The distrib}ltion

of light in the images of two luminous

points is as represented in Fig. 68. If the images of two points
overlap as much as in Fig. 69, they cannot be distinguished
as images of separate points. When two images can be dis-
tinguished as separate images, the two point sources are said
to be “resolved.” It is commonly assumed that the smallest
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distance between two point sources that can be resolved is
that which will produce images whose centers are separated by
a distance equal to the radius of the diffraction disk of one
of them. When the images of two point sources can be just dis-
tinguished as separate, the lens is said to be at its ““limit of resolu-
tion.” The ability of a lens to separate the images of two adjacent
point sources is called the “resolving power ” of the lens. The
“limiting angle of resolution ”’ of a lens is the angle at the center
of the lens between lines from two object points that are just
resolved by the lens. The angular resolving power of a lens is the
reciprocal of the limiting angle of resolution.

For a lens of small aperture compared with its focal length an
approximate value of the resolving power can be readily obtained.

Consider the case of two point sources, Fig. 70, separated by a

linear distance D. If the distance between the images be d, then

from the geometry of the figure, -

| D_ad
v

u

Denoting by 6 the angular distance at the lens between the two
sources, we have, since 0 is small,

. D
u

)

=7 . (121)

When the linear distance between the centers of the images is
less than the radius of the central diffraction disk of one of them,
the two images cannot be distinguished as two separate images.
Whence, putting d = r in the above equation, it follows that two
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distinet images of two point sources cannot be obtained if the
angular distance at the lens, between the sources, is less than

i)

0=

<1

(122)

From the second of these equations another value of the limiting
angle of resolution can be obtained which involves no quantities
except the aperture of the lens and the wave-length of the light
transmitted. We shall first consider the lens to be covered with a
diaphragm provided with a narrow slit of width a normal to the

plane of the diagram, Fig. 71. The

tens image of a point source will be

[x_ found on the screen distant » from

the lens. If the point source be on

the principal axis, light, which after

traversing the slit and lens arrives

~ 5" at A, will at that point be in the

N i same phase, that is, the center of

Fie. 71. the image will be at A. At points

B, B’, on either side of A and at

such a distance from A that the difference between ZB and XB

(or XB’ and ZB'’) is one wave-length \, there will be destructive

interference. The approximate half width (r = AB) of this
diffraction band is now to be found and substituted in (122).

Lay off BY = BX, and draw XY and EB. Since ZY, which
equals one wave-length, is minutely small compared with the
distance ZB, the line XY is almost perpendicular to ZB, and
consequently the triangles XYZ and EAB are approximately
similar. Then

N

AB_ 2V
EB " ZX
At the limit of resolution A B is so small compared with EA that
EA = EB. Thus we may write the above equation in the form

AB_ 7Y
EA 72X’
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or, using the notation in the figure,

r. N

-=")

v ‘a

M, '
or r=- (123)

On substituting in (122) this value of r, we obtain for the limiting
angle of resolution of a narrow diametral stripe of width a,

6, =2

"2 (124)

and for the angular resolving power of the stripe of the lens,

0.2

where 0 is expressed in radians.

When the aperture is a centric circle instead of a diametral slit,
the place of maximum interference is somewhat farther from the
lens than in the case just considered, and the radius of the diffrac-
tion disk is about 1.22 times that given in (123). Thus, when
light traverses an unstopped lens or one provided with a dia-
phragm containing a centric circular aperture of diameter a,

r 122N, (126)
a
the limiting angle of resolution is
0.= 1'2a2 LY (127)

and the angular resolving power is

(%) =y . (128)

37. The Smallest Resolvable Detail in an Image. — It will
now be shown that the smallest resolvable detail in an image is
proportional to the ratio of the focal length of the lens to its

aperture.
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From (122) and (126), the value of the least angular separation
between two object points is

g L
v

where a is the diameter of the round centric aperture of the lens,
v is the image distance, \ is the wave-length of the light, and r is
the distance between two image points at the limit of resolution.
In this equation r is taken to be the radius of the diffraction disk
of one of the image points.

Writing the above equation in the form

r., 1.22v

N oa

) (129)

we see that the smallest resolvable detail in the image, expressed
in wave-lengths, is proportional to the ratio of the focal length of
the lens to its aperture.

Since for a system of lenses the effective aperture is that of the
smallest aperture in the system, and since \ is the same for each
lens, it follows that the resolving power of a lens system is that of
the lens which has the smallest resolving power.

38. Absolute and Relative Indices of Refraction. — The ratio
of the speeds of light in vacuo to the speed in a given medium is
called the absolute index of refraction of the medium. The ratio
of the speeds of light in any two media is called the index of refrac-
tion of the second medium relative to the first.. Thus, representing
the speeds of light of a given frequency in vacuo, and in two media
by s, s1, and s, respectively, then the absolute indices of refraction
of the two media are

=35 d =3
n = o an Ng = 8—2 )
and the index of refraction of the second medium relative to the
first is

n2,1 (130)

S| el2

(131)
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It is readily shown that when light goes from one medium to
another in which the velocity is different, the ratio of the sines of
the angles between the normal to the interface and the rays in the
two media equals the ratio of the speeds in the two media. That is,

sing; _ &1
' sings 8
Consequently, (131),
—M|_sing
nz,l[— nl] e (132)

This is called Snell’s law.

39. The Refractive Index of a Substance in the Form of a
Prism. — Snell’s law is the basis of most methods for the deter-
mination of refractive indices. The above expression of the law
is often written

sin ¢

n= m) (133)
where 7 is the index of refraction of the second medium relative to
the first, 7 is the angle of incidence and r is the angle of refraction.
Starting with this equation, a formula will
now be deduced for the determination of
the refractive index of a substance in the
form of a prism of known refracting angle.

In Fig. 72, consider light incident on the
prism of refracting angle A at an angle
of incidence 7. On entering the prism, the
. angle of refraction is r.

At the second face, the angle of incidence is represented by 7/,
and on emergence into the air the angle of refraction is 7. At the
point of emergence draw a line parallel to the ray incident on the
first face. The angle § bétween this line and the emergent ray is
the deviation produced by the prism.

From the geometry of the figure, the deviation

=a+8.

TFia. 72.

But
al=d]l=i—7r and B=17¢ -7,
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so that
d=1—r+1r —17. (134)
But
' r+1iv=e=A. (135)
Consequently,
s=147r —A. (136)

On arranging the experiment so that ' =4, r =¢’. In this
case we have from (135), r = } A and from (136),6 = 2¢ — 4 or
i=3%(4+453).

On substituting these values of 7 and r in (133), we have, under
the conditions of the experiment,

n[= sinz'] _sin} (4 +3)

sinr sin} A

In the following article it is shown that under the condition
implied in (137), namely, that the angle of emergence 7’ equals the
angle of incidence ¢, the deviation & is the smallest that can be
produced by the given prism. A prism in this position is said to
be set for minimum deviation.

40, The Condition that the Deviation produced by a Prism
shall be Minimum. — From (134), the deviation

=@+ - @+ (138)

If the medium surrounding the prism be air or anything else having
a smaller refractive index than the prism,

@E+7)> @G + 7).

We shall now find under what conditions the value of (z + ')
is the smallest possible. From Fig. 72 and Snell’s law,

sint =nsginr and sinr = nsin.

(137)

Whence, sin? — sin7’ = n (sinr — sin7’)
and sin? + sin7’ = n (sin r + sin ¢’).
Expanding each of these expressions we obtain

2sin} (t —1")cos} (t+ 1) =2n[sin} (r — ') cos (r + 7],
2sin} (G +7)cosy (G —1') =2n[sin} (r+ ) cos} (r —¢')]. (139)
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Dividing each member of the last equation by the corresponding
member of the preceding, we obtain

tan3 G+ ) cot3 (G —7') =tanj (r + ') cot 4 (r — 2")
or tan}(G+r)tani(r—<) =tan} (r+ ') tang (¢ — 7).
Whenever (7 + r\') > (&' +7),thentan} (¢ + ') > tan} (¢’ + 1),
and we see from the preceding equation that
tan} (f — 1) L tan } (r — 7)),
or C—=r)L(r—17)
and cos}(t—7") Ppcos}(r—1i).
This result in connection with (139) shows that
sin} {4+ ) < nsin} (r +7').
Whence, the smallest value of (¢ + 7’) is such that
sin} G+ ) =nsin} (r+17'),
that is, (139), when
cos3 (t — 1) =cos} (r—17),
or t—r'=r—1.
Putting this equation into the form
i—r=1—-17,
we see that minimum deviation occurs when the bending at the
first face of the prism equals that at the second face. But in order
that there shall be the same bending, the angles between the rays

in either medium and the corresponding normals to the interfaces
must be equal. That is, for minimum deviation

i=7 and r=7.
41. The Critical Angle of Incidence. — An important special
case of (132) is one in which light goes from a medium in which the
speed is less to a medium in which the speed is greater. In this

case, 8 > 8 and ¢ > ¢;. In the limit when ¢ = 90°, we have
from (131) and (132),

m 1,2 8in¢1’
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or, in words, when light goes from a medium in which the speed is
less to one in which the speed is greater, and at such an angle of
incidence that the angle of refraction equals 90°, then the index of
refraction of the first medium relative to the second equals the
reciprocal of the sine of the angle of incidence. If the angle of
incidence be smaller than this critical value, some light will be
transmitted into the second medium and the remainder will be
reflected back into the first medium. If the angle of incidence
be greater than this critical value, no light will be transmitted into
the second medium but all will be reflected back into the first
medium. Denoting the critical angle of incidence by ¢, we can

write the above equation in the form
m

1 :
E—nlz— s?c (140)

From this relation will now be derived the equation upon which
depend several important instruments for the determination of

F1a. 73.

refractive indices of liquids. Suppose the liquid whose refractive
index is sought is on the face XY of the glass block XYZ, Fig. 73.
Consider the ray KL which makes with the normal to XY the
critical angle ¢. In so far as the following analysis is concerned,
the light may travel either in the direction KL or LK. Denoting
the refractive index of the specimen by 7, and that of the prism by
ng, We may write, (140), '

-——smc
9

Through the point K draw the line NM perpendicular to YZ
and the line OP parallel to XY. Produce LK. Let KJ be the
continuation, in air, of the ray LK.
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Represent the complement of the angle XYZ by «; the angle
YLK by 8; JKM by 7; and LKN by R. Then, fromn the geom-
etry of the figure,

sin¢ = cos B = cos (@ — R).

Consequently, the preceding equation may be written

n, = n,cos (@ — R)
= n, (cos a cos R + sin a sin R)
= n, (cos @ V1 — sin? R + sin asin R).

If the index of refraction of glass be taken relative to air, we
have from (132)

Substituting this value of sin R in the preceding equation,

: sin?z , . gin¢
n, = ngcosa /1 — o +sma-n—

(4 9
= cosa Vn,? — sin?4 + sin asin . - (141)

In the Pulfrich refractometer, the angle « is 0°. In this case,
sina = 0, cos a = 1, and (141) becomes

n, = Vn,2 — sin®z. (142)

In the Abbé, the butyro, and the Zeiss immersion refractometer,
the angle o« has different values depending upon the indices of
refraction the particular instrument is designed to measure.

A plane wave, whose front is perpendicular to the plane of the
paper on entering the liquid-glass surface XY at grazing incidence,
will emerge from the glass into the air with the wave front per-
pendicular to the plane of the paper and making an angle 7 with
the normal to the glass-air surface. If, after emergence, this light
traverses axially a converging lens, it will be brought to a point
focus in the plane of the paper. The line through this point and
perpendicular to the plane of the paper will contain the foci of all
beams, which, on entering the liquid-glass surface at grazing
incidence, are not parallel to the plane of the paper.
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Light incident on the liquid-glass surface at angles less than 90°
will emerge from the glass into the air below the line KJ. Con-
sequently, if monochromatic light be used, the field of view in the
lens consists of a bright part and a dark part sharply separated
from one another by the line KJ. If white light be used, the
division line will be nebulous and colored. ’

42. Specific Refractivity. — The refractive index of a sub-

-stance depends upon the temperature, pressure, and state of -
aggregation of the substance. But from a consideration of the
Clausius-Mossotti theory of dielectrics and the electromagnetic
theory of light, Lorenz of Copenhagen and Lorentz of Leyden have
found a function of the refractive index and density that is inde-
pendent of the above-mentioned variables. This is of the form

»-11
N+2°d

where N is the refractive index for light of very long wave-length,
and d is the density. Experiment shows that this function is not
only practically independent of temperature, pressure, and state
of aggregation, but also of the wave-length of light employed in
determining the refractive index. It is called the Lorenz specific
refractivity or specific refracting power, and may be expressed in
the form

n—11

= m’a; (143)

R.

where 7 is the refractive index for light of any wave-length.

A simpler function of refractive index and density is found by
experiment to be nearly independent of temperature and pressure,
though not of state of aggregation. This is called the Gladstone
and Dale specific refractivity or specific refracting power, and is of
the form

Rop ===, (144)
where 7 is the refractive index for light of a given wave-length
and d is the density.
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The specific refractivity of a substance is practically unin-
fluenced by the presence of another substance that may be mixed
with it. Thus, if p per cent of one substance of specific refrac-
tivity R, be mixed with (100 — p) per cent of another substance
of specific refractivity R,, the specific refractivity of the mixture
will be '

R=Ri b P L5+ Ba 100 p, (145)

where the R’s may be either Lorenz’s or Gladstone and Dale’s
specific refractivities. This equation is useful for the determina-
tion of the specific refractivity of one ingredient when one knows
the composition of the mixture together with the specific re-
fractivity of the mixture and of the other ingredient. In the case
of a mixture of two ingredients, knowing the specific refractivity
of the mixture and of each ingredient, (145) can be used to deter-
mine the composition.

The product of the specific refractivity of a substance and its
molecular weight is called the molecular refractivity of the sub-
stance. There is the Lorenz molecular refractivity and also the
Gladstone and Dale molecular refractivity.

43. The Pulfrich Refractometer. — A horizontal beam of
monochromatic light from a Geissler tube G, Fig. 74, after being
converged by a condenser C on to the horizontal liquid-glass sur-
face XY of the glass block P, Figs. 74 and 75, emerges from the
vertical glass-air surface, and by means of a 45° prism in front of
the objective of a telescope T is reflected a.long the axis of the
telescope.

The field of view of the telescope consists of a bright region and
a dark region separated by a sharp line as explained at the end of
Art. 41. Light coming to the boundary line makes an angle 2
with the normal to the vertical face of the rectangular block P.

The angle ¢ may be measured by first rotating the divided disk
D with the attached telescope T about the axis through A, till the
boundary line is brought into coincidence with the cross hairs in
the focal plane of the telescope; noting the scale reading; then
rotating the divided disk till the cross hairs coincide with a ray
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normal to the vertical face of P; and again noting the scale read-
ing. The difference between these scale readings is the angle 7.
The coincidence of the cross hairs with a normal from the vertical

>

Fia. 74.

face of the block P is obtained by the aid of a tiny reflecting prism
a in contact with the cross hairs. Light entering this prism
through a hole in the side of the telescope is
reflected past the cross hairs to the vertical
face of P. It is there reflected back through
the objective. When the image of the cross
hairs coincides with the cross hairs, as shown at
z in the small diagram in the right-hand margin
of Fig. 74, then the normal to the vertical face
of P passes through the intersection of the cross hairs. The scale
reading now observed is the zero point for subsequent observations.

By means of an accessory reflecting prism and attached lens B,
light from a sodium flame can be quickly substituted for the light
from the Geissler tube. ‘

Fia. 75.

i
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The Pulfrich block P and the liquid under test can be main-
tained at a definite temperature by means of a constant stream of
water through the tubes shown in Fig. 74. )

For increasing the range of the instrument, glass blocks of
different refractive indices are supplied. For example, one block
can be used to measure refractive indices from that of water, (1.33),
up to 1.61; another has a range of from 1.47 to 1.74.

By dividing the specimen cell into two compartments by means
of a thin black glass partition in the plane of the incident light, the
difference between the refractive indices of two liquids can be
« determined from a single observation. With this

arrangement there will be two critical border
lines and the angle between these lines is a meas- %l
ure of the difference between the refractive indices L {0
of the two specimens. Al

The scale of the instrument is usually divided a2l
into degrees. Tables are supplied by means of
which the refractive index corresponding to any
scale reading when a particular glass block was
employed can be obtained without computation.

With this instrument, readings of refractive
indices accurate to one unit in the fourth decimal
place are possible; and when using the double
cell, readings of differences of refractive indices
can be made with a precision of one unit in the
fifth decimal place.

44, The Zeiss Immersion or Dipping Refractometer. — This
instrument consists of a telescope having a glass micrometer eye-
piece, an Amici prism A, Fig. 76, and a glass block P which per-
forms the same function as the rectangular block in the Pulfrich
refractometer. As in the latter instrument, light meeting at
grazing incidence the surface separating the glass block P and the
liquid under test is refracted at the critical angle. In this in-
strument, however, the angle « has such a value that the light
transmitted by the glass block will proceed along the axis of the
telescope. The position of the critical line separating the dark
from the light portion of the field of view is marked by the eye-

Fia. 76.
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piece micrometer. According to the type of ocular, this scale may
be engraved on one surface of the field lens F, or on a piece of plain
glass situated either between the objective and field lens or between
the field lens and eye-lens. By means of the micrometer screw M,
the glass scale can be moved laterally, thereby permitting an
accurate determination of a fraction of a scale division.

The liquid under test is contained in a glass beaker in a constant
temperature bath provided with a glass bottom. A mirror reflects
daylight or lamplight at grazing incidence to the surface separating
P from the liquid under test. This light will be dispersed in planes
parallel to the paper by the specimen and the glass block P. If the
dispersed light be not recombined, the critical line separating the
" bright from the dark part of the field of view will be colored and
nebulous. The function of the Amici prism A is to cause the light
dispersed perpendicular to the critical line to recombine into white
light. It consists of a flint and two crown glass prisms the same as
used in the direct vision spectroscope, Fig. 89. Such a prism will
disperse incident white light in the plane of the triangular faces
without changing the direction of the light of the particular fre-
quency for which the prism is designed. Conversely, when a beam
of light dispersed in the plane of the triangular faces is transmitted
by such a prism, it will suffer a further dispersion when the prism
is in one position, and a diminution of dispersion when the prism
is rotated about the axis of the beam. In this instrument, the
Amici prism acts as a compensator of the dispersion produced by
the specimen and the block P. The amount of compensation
perpendicular to the critical line depends upon the orientation of
the compensator relative to the block P. This orientation is
effected by twisting the ring R.

The scale of this instrument is divided into 100 parts. The
refractive indices corresponding to the various divisions have been
computed and tabulated in a convenient form supplied with the
instrument. The range of the instrument is from 1.3254 to 1.3664.
Settings can be made with a precision of four units in the fifth
decimal place.

45. The Abbé Refractometer. — The action of this instru-
ment involves the same principles as does the action of the Zeiss
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immersion refractometer. The specimen is in the form of a thin
stratum between a triangular glass block P, Fig. 77, similar to the
one used in the Zeiss immersion refractometer, and a supplemen-
tary glass block P’. (In the figure, these two blocks are shown
separated, ready for the insertion of a few drops of the specimen.)
The face of the supplementary block P’ in contact with the speci-
men is ground. Ordinary light reflected up through this block
renders each point of the ground face a
light source. Light from these point
light sources, meeting the surface sepa-
rating the specimen from the block P
at grazing incidence, is Yefracted at the
critical angle, and after traversing the
telescope objective is converged to a
critical line as in the Pulfrich and the
Zeiss immersion refractometers.

The dispersion produced by the speci-
men and the block P is compensated
by means of two Amici prisms, coaxial
with the telescope and situated between
the block P and the telescope objec-
tive. By means of a milled head, these
Amici prisms can be simultaneously rotated in opposite directions
till a position is found for which the critical line is colorless and
sharp. :

In making a setting with a given specimen, the pair of glass
blocks P and P’ is rotated as a unit about a horizontal axis
through X, by means of a pointer or alidade A, till the critical line
separating the light from the dark portion of the field of view coin-
cides with a fixed cross hair in the eyepiece of the telescope. The
reading on the fixed circular scale S is facilitated by the use of a
lens L attached to the end of the alidade. Usually, this scale is
divided to give refractive indices directly, without computation,
for sodium light.

The angle between the planes of incidence of the two Amici
prisms of the compensator is indicated by a circular scale on a
drum around the objective. When the critical line is colorless;

Fra. 77.
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this angle together with the constants of the instrument supply
the data for computing the mean dispersion produced by the
specimen.

The raage of this instrument is usually from 1.3 to 1.7, and the
precision is about two units in the fourth decimal place.

46. The Butyro Refractometer. — In many lines of industrial
work it is required to make frequent tests of the integrity or purity
of specimens of the same substance. When a number of speci-
mens are presumably of the same material, and consequently
should have the same refractive index and the same mean disper-
sion, the test can often be made with a much simplified form of the
Abbé refractometer. The two-Amici-prism compensator can be
omitted. The glass block P can be rigidly attached to the objec-
tive end of the telescope and the alidade with the circular scale
dispensed with.

To produce the necessary compensation for one particular
substance, the refracting angle of the block P is given such a value
that with the material for which the instrument is designed, the
critical line will be white, and will fall on a determined division
line of a glass scale in the eyepiece of the telescope.

If a specimen be tested which has a refractive index different
than that for which the instrument was designed, the position of
the critical line will indicate the fact. If the specimen has a mean
dispersion different than that for which the instrument was de-
signed, the critical line will be colored. In case the mean disper-
sion of the specimen ig less than that for which the instrument was
designed, the red component of the transmitted light will be
deviated to the bright side of the critical line, and the blue to the
dark side. Thus, the critical line appears red. With a specimen
having a mean dispersion greater than that which the instrument
achromatizes, the blue light will be deviated to the bright side
of the critical line and the red to the dark side. In this case the
critical line will appear blue.

An instrument of this sort designed for testing butter-fat is
called a butyro refractometer. Refractometers of the same sort are
used for testing various other commercial products. They have
a precision of about one unit in the fourth decimal place.
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47. The Féry Refractometer. — This instrument, Figs. 78 and
79, consists of a collimator C and telescope T, between which is an
acute-angled hollow glass prism P inside of a water bath provided
with ends formed of lenses. The water bath is maintained at a
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Fia. 79.

constant known temperature by means of a convection current
produced by a lamp L. The water bath with the contained prism
can be moved perpendicularly to the common axis of the collimator
and telescope by means of a
rack-and-pinion operated by the
knob K. A setting consists in
moving as a unit the water bath
with the prism containing the
liquid whose refractive index is required, until the image of a wire
w coincides with the cross hairs in the eyepiece. The amount of
the displacement from the zero position is read by means of a
scale ssand vernier v.

If the prism were not in” the water bath, Fig. 80, a beam of
light from the collimator, entering the water bath axially, would
emerge from the water bath in the same direction and form an

=0 :

Fia. 80.
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image of the wire w on the cross hairs of the telescope. On in-
troducing the prism containing the specimen, the beam will be
refracted toward the base of the prism, Fig. 81. But by moving
as a unit the water bath and the contained prism, in a direction
transverse to the common optic axis of the collimator and tele-
scope, Fig. 82, the light emerging from the water bath will be
again axial. It will now be shown that the linear distance the

— 1. ([T ¢ —{} 1
oA (e S |
Fia. 81. Fia. 82.

water bath must be moved to neutralize the deviation produced
by the prism of specimen is directly proportional to the refractive
index of the specimen.

It is shown in Arts. 39 and 40, that for a prism of refracting
angle A set at minimum deviation, the index of refraction of the
material of which the prism is made

n_sin}(A + 9)
T gin}d "’

where § is the angle of deviation.

If the refracting angle of the prism be sufficiently acute, the
angles A and é will be so small that the sines, and the angles
(expressed in radians) will be approximately equal. In this case,
the preceding equation becomes

or d=AMm-1).

Whence, for an acute-angled prism, the index of refraction is
directly proportional to the devia ion.

Now in any plane through the axis, the lenses forming the end
faces of the water bath are essentially prisms of variable angle, the
angle varying directly with the distance from the axis. It follows
that by moving the water bath transversely, the deviation pro-
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duced by the liquid prism will be neutralized by an amount
directly proportional to the linear displacement of the water bath
from the axial position. Consequently, when the deviation of
the prism is exactly neutralized, the linear displacement of the
movable system from the zero position is directly proportional to
the refractive index of the specimen.

The scale of the commercial instrument is divided so as to
express refractive indices directly. The numbers on the scale
represent the first two decimal places of the refractive indices —
the whole number unity being always understood to precede the
reading. By means of the vernier divided into 25 parts one can
read the third and fourth decimal places.

Before the specimen is introduced into the hollow prism, the
instrument is adjusted as follows: Fill the water bath, light the
lamp, and wait till the bath is at about the required temperature.
By means of the milled head attached to the jaws of the collimator
slit, bring into coincidence the two “0’’ marks on the jaws. Set
the vernier to read the refractive index of the glass composing the
hollow prism. Place a sodium flame in front of the slit. Move
the eyepiece in and out till the cross hairs are in focus. By means
of the large milled head on the telescope, move in and out the
fitting containing the eyepiece and the cross hairs till the image of
the wire w is in the plane of the cross hairs. By means of the small
milled head on the telescope move the cross wires transversely till
their intersection coincides with the image of the wire w. The in-
strument is now in adjustment for refractive indices between
1.3300 and 1.5326.

In making a determination, the specimen is introduced into the
hollow prism and the milled head K turned till the image of the
wire w is again on the intersection of the cross hairs. The refrac-
tive index of the specimen is then read directly by means of the
scale and vernier.

The range of the instrument can be altered by changing the
thickness of the specimen traversed by the light. The standard
instrument can be adjusted as follows so that the scale indications
" are just 0.14 too small. When it is desired to increase the range
by this amount, the jaws of the collimator are moved till the two
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“1” marks coincide; the vernier is set to read 0.14 less than the
refractive index of the glass composing the hollow prism; and the
remainder of the adjustments made as above described.

48. The Oleorefractometer of Amagat and Jean. — Like the
Féry refractometer, this instrument consists of a collimator, tele-
scope and hollow glass prism. It differs in that the specimen
prism is within a parallel-sided cell filled with a standard liquid;
this cell is enclosed in a parallel-sided water bath; and the prism,
cell, and water bath are fixed in position relative to the collimator
and telescope. By means of an absorptive glass in the collimator,
light from a lamp is rendered sufficiently monochromatic.

The position of the collimator window is such that the field of
view in the telescope consists of a bright portion and a dark por-
tion separated by a vertical straight line. If the refractive index
of the specimen be different from that of the standard liquid, the
light will be deviated either to the right or to the left, according
as the refractive index is greater or less than that of the standard
liquid. Thus, the position of the critical line depends upon the
difference between the refractive indices of the two substances.
By always using the same liquid in the cell, the refractive index
of the specimen in the prism will be indicated by the position of
the critical line. This position is read on a uniformly divided
eyepiece micrometer (Art. 12) within the telescope. Before in-
troducing the specimen, the prism and cell are both filled with
the standard liquid, and the position of the collimator window
adjusted till the critical line coincides with the zero point of the
micrometer scale. The prism is then cleaned and filled with
the specimen under test. The position of the critical line on the
scale now indicates the refractive index of the specimen.

On the eyepiece micrometer are engraved two horizontal scales.
The upper one applies to specimens at 22° C., and the lower one
to specimens at 45° C. The index of refraction of a liquid at
22° C. corresponding to any scale reading d on the upper scale is

nge = 1.4675 2= 0.00025 d,
while that of a liquid at 45° C. corresponding to any scale reading d
on the lower scale is nes = 14595 & 0.00025 d,
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where the plus sign is to be used when the deviation is to the
right of the zero line of the scale, and the negative sign is to be
used when the deviation is to the left.

49. The Dawes Refractometer. — This instrument of recent
design consists of a Gauss eyepiece @, and a piece of plane parallel-
sided glass in contact with a double convex lens. A drop of the
liquid whose refractive index is required is placed between the
glass plate and lens. The back surface of the lens is silvered.

NG D

A Gauss eyepiece is one with a side opening and a piece of
unsilvered glass inclined 45° to the axis. Light reflected by this
mirror strongly illumines the cross hairs without interfering with
the view through the eye-lens. A

In the case of the present instrument light diverging from the
cross hairs as a source traverses the plane glass, the specimen
and the lens, and is reflected back by the silvered surface. The
setting of the instrument for finding the refractive index of the
specimen consists in adjusting the distance z between the cross
hairs and the plane surface of the specimen till the image of the
cross hairs, formed by the reflected light, coincides with the cross
hairs themselves.

In order that the cross hairs and their image may coincide, the
two waves traversing any selected point on the axis must have
equal curvatures. We will now set up an expression for the
curvature of the wave front moving to the right, and also one
for the curvature of the wave front moving to the left, when each
is at the left pole of the lens. Equating these two values we will
have an expression involving the required refractive index, the
distance z, and measurable constants of the apparatus.

Let ¢’ and n’ represent the thickness and refractive index, re-
spectively, of the glass plate. At the first surface of the glass
plate, the radius of curvature of the wave front proceeding from



138 OPTICS

the cross hairs is £ — ¢’. At the second surface, it exceeds this
value by the distance the wave travels in glass during the time it
would travel the distance ¢’ in air. Whence, at the second sur-
face of the glass plate, the radius of curvature of the wave front is

tl
R=zxz-1t + ’;&—,.
And since the curvature of a spherical surface equals the recipro-
cal of the radius of curvature, the curvature of the wave front at
the second surface of the glass plate is

C[:é]:;t'. (146)
x—t,+1?

-

In traversing the plane surface separating the glass plate and
the specimen there is no change of curvature of the wave front.

Fig. 84.

The change of curvature in passing through the spherical surface
between the specimen and lens will now be found. In Fig. 84
the heavy curve of radius R, represents the surface separating the
specimen of refractive index n from the lens of refractive index
n'’; the light curve of radius » represents an incident wave front;
and the dashed curve of radius v represents the front of the corre-
sponding refracted wave. From Snell’s law of refraction

nsintz =n"sinr.
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We will use such a small lens aperture that in place of the sines
of 7 and r we can put the angles themselves, expressed in radians.
Then, the above becomes
nt = n''r.

From the geometry of the figure, 1 = 8+ ¢, and r = 0 + ¢.
So that

n(B+¢)=n"0+9¢),

n'"0 — nB =¢(n—n').
Since the aperture of the lens is so small, the line z approximately
equals the arc subtended by the angles 6, 8, and ¢. Whence,
expressed in circular measure,

2z z z

Consequently, the above equation may be written

nll
CRE R (147)

The left member of this equation is the change in curvature im-
pressed on the wave entering the surface separating the specimen
from the lens.
Consequently, on entering the lens, the curvature of the wave
front originating at the cross hairs, is (146) and (147),
1 n—n"
t R, (148)
z—1t + ;,

We will now find an expression for the curvature, at this same
point, of the wave front which, reflected from the concave sil-
vered surface, forms an image coinciding with the object. Call
the radius of curvature of the silvered surface R,, and the distance
between the poles of the lens ¢”’. As the image is to coincide with
the object, the wave front incident on the mirror must have the
same curvature as the mirror. On traveling back through a

medium of refractive inlt'lex n'’ for a distance t”, the radius of
t

curvature will be &nT_ , and the curvature will be

nll
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. Since in traversing this point in either direction, the curvature
of the wave front is the same, we have, from (148) and (149),

1 n—n" n'
tl Rl = R — t”. (150)
-t + 17 2
This may be written

1 n nll nl'
—at o=t —m
o — t'+:7 R, R, Ry—t

1 n
or x——B+ B 4,

when A, B, and R, are constants for a particular instrument.
Whence, the required refractive index

1 R '
n=(A—a:——B).R1=C_x—1B’ (151)

where C represents the constant quantity AR,.

The three constants in the above equations are most easily
determined from measurements of x for three substances of
known refractive indices.

50. The Plane Diffraction Grating. — A transmission diffrac-
tion grating consists of a piece of clear glass on which are a large
number of fine equally spaced parallel straight opaque lines a few
wave-lengths apart. Such a grating may be made by plowing
furrows through the surface of a thin piece of plate glass with a
diamond point. Replicas of a diamond ruled grating can be
cheaply made either by photography or by taking a cast of it in
collodion.

A reflection diffraction grating consists of a highly polished
metal surface in which have been ruled a large number of equally
spaced straight grooves a few wave-lengths apart. Transmission
gratings can be made by flowing a thin solution of collodion over a
reflection grating, removing the dried collodion film and mount-
ing it on a glass plate. Gratings usually have from ten to twenty
thousand lines per inch.
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" Consider, first, the effect of a transmission grating on a plane
wave incident normally upon it. In Fig. 85 are represented three
transparent spaces of a transmission grating. Every point of
each space is a center of disturbance from which light proceeds in
every direction. At first suppose the incident light is mono-
chromatic. From the center of each space represented in the

v

'

J

o ].

Il
Fia. 85.

figure are drawn several spherical wavelets, one wave-length apart.
Surfaces tangent at every point to these wavelets are wave fronts
advancing from the grating. In the figure several such \plane
wave fronts are represented. Two rays from each wave front
are indicated. If a positive lens be placed in the path of the
light from the grating, each of these plane waves will be converged
to a focus. That is, each of these plane waves will produce an
image of the object from which comes the light incident on the
grating. Besides the central image I, there is a series of images
I,, I,, I, etc., and another series I/, I/, I, etc.

If instead of being monochromatic, the light source emits light
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of several wave-lengths, each of the images will be multiple, that
is, will consist of an image of the object for each wave-length. At
the central image I, the various colored images are superposed
producing a single resultant image of the color of the object. At
I, I, I, ete., and I/, I’ I, etc., the separate images of various
colors are side by side, the spaces between the separate images
depending upon the differences between the wave-lengths of the
components of the incident light. The multiple images, other
than the central one, are called spectra. The spectra at I, and
I, are called the spectra of the “first order,” those at I, and I,
are called the spectra of the “second order,” etc. Beyond the
spectra of the second order formed by gratings of more than about
fifteen thousand lines per inch, there is considerable overlapping
of the spectra of various orders.

Light Incident Normally on a Transmission or on a Reflsction
Grating. — The effect of a reflection grating on which light is
incident normally can be also obtained from a study of Fig. 85.
In this case the grooves take the place of the opaque spaces of
the transmission grating, reflecting spaces take the place of the
transparent spaces, and the light is incident from the right nor-
mally.

If we represent the width of one grating element, that is, the
width of one transparent space together with one opaque space
(or, in the case of a reflection grating, one reflecting space together
with one groove) by the symbol b, and the angle between the
grating and a wave front which gives an image of the first order
by thé symbol 6;, we have from Fig. 85,

\ = bsinéy,
where \ is the wave-length of the light in the particular image.

In general, if the angle between the grating and the wave
front which gives an image of the nth order be represented by 6.,

bsin 6,
n

A= (152)

The diffraction grating furnishes the simplest method for the
accurate determination of wave-lengths of light. The dispersion
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varies inversely with the grating space b; the resolving power
varies directly with the total number of lines in the ruled space.

Plane gratings are usually mounted at the center of a divided
circle as shown in Fig, 136. Light from the source after travers-
ing the slit S and lens L, constitutes a parallel beam incident on
the grating G. The slit S and lens L, constitutes a system called
a collimator. After leaving the grating — either by transmission
or reflection — the light is focalized by the lens L, in the plane
of the cross hairs D. This image is magnified by the lens Ls.
The lenses L, and L; with the cross hairs constitute a reading
telescope.

A reflection grating can be set normal to the direction of the
incident light as follows: First with the grating removed take
the reading of the pointer attached to the telescope when the

[ A n A VA
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Fiag. 86.

image of the slit is at the intersection of the cross hairs. Then,
after placing the grating in place with the reflecting surface
toward the collimator, take a reading of the pointer when the
first order image to the right is on the intersection of the cross
hairs. The angle 8 through which the telescope has been turned
is the complement of the deviation 6; of the first order image on
the right-hand side. In the same manner find the deviation 8,
of the first order image on the left-hand side. When the plane of
the grating is normal to the direction of the incident light, 6,
will equal 6,".

Light Incident Obliquely on a Reflection Grating. — In Fig. 87,
let AB and A’B’ be two positions of a small part of the grating
capable of rotation about O. Let ¢ be the angle between the two
positions of the grating, and 6 the angle between the axes of the
collimator and the telescope. Let XY be one grating space.
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Draw OP and YZ perpendicular to AB and OQ perpendicular to
A’B'. CY and C'X are parallel rays from the collimator, and
YT and X7" are parallel rays from the grating to the telescope.
Now it is a fact if light be reversed in direction it will retrace
its original path. Thus in the present case, if the collimator and

Fiag. 87.

telescope be interchanged, light incident on the grating in the
direction 7Y would enter the telescope in the direction YC. It
follows that OE, the bisector of the angle QOP, is parallel to YD,
the bisector of the angle TYC. And since YZ is parallel to OP,
and POQ = ¢, it follows that ZYD = 1 ¢. .

Draw Yu perpendicular-to XC’, and Xv perpendicular to YT.
Yu is the wave front on incidence, and Xv» is the wave front on
reflection. This reflected wave front is in advance of the incident
wave front by the distance (Yv — Xu). The condition for a
bright line in the spectrum is that this distance shall equal a
whole number of wave-lengths. That is,

‘ n\ = Yy — Xu,

where n is the order of the spectrum.



THE CONCAVE DIFFRACTION GRATING . 145

But, from the construction of the figure,
Yv=YXsinYXy=YXsinTYZ = YXsin} (0 + ¢)
and Xu=YXsinXYu=YXsinCYZ =YXsin} (@ — ¢),
denoting the distance YX between two consecutive rulings by b,
’ n\[=Yv— Xu]=bsin @+ ¢) —bsin (0 — ¢)

= 2bcosg sin 9,

2 2
_2b 0. ¢
or _ A= ~, €os 58in 5, (153)

where 7 is the order of the spectrum.

In applying this method, the collimator and telescope are
clamped together at a known angle 8. The grating is turned till
the spectral line whose wave-length is required is on the cross
hairs of the telescope. The grating is then turned till the same

" line from the same order of spectrum is obtained from the other
side of the normal to the grating. The angle between these two
positions of the grating is the angle ¢ of (153).

61. The Concave Diffraction Grating. — By means of a grating
ruled on a concave reflecting surface, a sharply defined spectrum
can be formed without the aid of
lenses. The method of determining
wave-lengths by means of a concave
grating will now be developed.

In Fig. 88, let G represent the
grating surface with center of curva-
ture at C and the rulings normal ‘o
the plane of the diagram. Suppose -
that X and Y are two adjacent rul-
ings. (As a matter of fact, the dis-
tance between two adjacent rulings is only about 0.0002 c¢m.)
Construct a circle through Y having the radius of the grating as
a diameter. At some point S on this circle put the slit S parallel
to the rulings. At some other point I on the same circle, light
diffracted from X and Y will produce a bright image of the slit.
For wave-length A, this will occur when

n\ = uX —vY.

Since X and Y are very close together, the angles of incidence 7,

and 7; are very nearly equal, and the angles of diffraction k; and ks

Fia. 88.
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are very nearly equal. Consequently, we will represent each angle
of incidence by the same symbol, ¢, and each angle of diffraction
by the same symbol, k. From the figure, since uY is perpen-
dicular to 8X, and XY is perpendicular to CY, uYX = 4. And
since vz is perpendicular to IY,and XY to CY,vXY = k. Whence,
uX = XY sin+¢, and vY = XY sink. Substituting these values
in the above equation,

n\ = b (sin — sin k), (154)

where b represents the distance XY between two consecutive
rulings. ,

At the center of curvature C of the grating, light of wave-length
. will produce a bright image of the slit. For this position,
k =0, sink = 0, and (154) becomes

7\ = bsini. (155)

At some point I’, light of wave-length A’ will produce a bright
image of the slit. For any image between C and S,

n\ = b (sin < + sin k). (156)

Consequently, the higher orders of spectra, and the spectral
lines of greater wave-lengths of any one order, lie nearer the slit.

52. Spectra. — When a parallel beam of unhomogeneous light
from a narrow slit falls upon a prism or grating the component
colors of the beam are dispersed. If a converging lens be placed
in the beam after leaving the prism or grating, light of each fre-
quency will form a separate image of the slit. If the frequencies
of the various components differ considerably one from another,
the separate images of the slit will be distinctly separated. Such
a group of images of the slit is called a “bright line spectrum.”
But if the differences in the frequencies from one component to
the next are small, the various images of the slit will merge into
one another thereby forming a ‘‘continuous spectrum.” An in-
candescent gas free of solid particles gives a bright line spectrum.
An incandescent solid or liquid gives a continuous spectrum.

If in a beam of light giving a continuous spectrum there be inter-
posed a transparent colored substance, certain colors of the con-
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tinuous spectrum will be blotted out. The resulting spectrum
which is essentially a continuous spectrum interrupted by dark
spaces is called an “absorption spectrum.” '

The positions of the lines of a bright line spectrum, and of the
dark bands of an absorption spectrum, are characteristic of the
substance producing the spectrum.

Wave-lengths of light are expressed in various units. The
micron, represented by the symbol g, is 0.001 mm. The Ang-
strom * unit, represented by the symbol 4 is 10~ meters. For
example, the wave-length of the light of the line D, of the sodium

spectrum is .
0.00005896 cm. = 0.5896 » = 5896 A.

63. The Spectroscope and the Spectrometer. — A spectro-
scope is an instrument for producing spectra. A spectroscope
provided with a scale by means of which wave-lengths can be
determined is called a spectrometer. Spectroscopes and spectrom-

8<
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Fia. 89.

eters are made in an immense variety of forms. But in all types,
light from the source under investigation, after traversing a nar-
row slit, and after being dispersed into its components by either
a prism or a grating, forms an image of the slit for each wave-
length.

A common type, Fig. 89, consists of a slit S at the principal
focus of a lens L;, one or more prisms (or a plane grating) at P,
and an astronomical telescope T with a Ramsden eyepiece and cross
hairs. The tube C with the slit at one end and the lens at the
other is called the collimator. The purpose of a collimator is to
render parallel the light diverging from the slit.

* Pronounced Ong’-stroem.
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The “direct vision ” spectroscope consists of a slit S, Fig. 90,
a lens L, to render parallel the light from the slit, a system of
crown glass and flint glass prisms by means of which the light is
dispersed without being deviated from its incident direction, a
lens L, which converges light of each frequency to a separate -

Iy
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Fia. 90.

image of the slit, and a lens L; for magnifying this spectrum.
Light may enter the slit from a source in the axis of the instru-
ment, or, if a totally reflecting prism P be employed, from a
source at“one side of the instrument. This totally reflecting
prism usually covers but one-half the length of the slit so that
light from two sources can enter at the same time. By this
device, which can be applied to a spectroscope of any type, the
spectra of two substances are formed side by side. If the wave-
lengths of the lines of one spectrum are known, the wave-lengths
of the lines of the other spectrum can be estimated by a com-
parison of the distances between the lines. This instrument is
often provided with a scale k ruled on glass. When this scale is
properly illumined, an image of the scale is formed in the image
plane. The positions of the spectrum lines can then be referred
to this fixed scale.

In the “auto-collimating ” spectroscope the functions of both
collimator and telescope are performed by the telescope. In the
focal plane of the telescope, Fig. 91, is a diaphragm filling one-
half of the cross section of the tube. In this diaphragm is the
slit s which by means of the total reflection prism p is illumined
by the source S. Light from the source, sfter traversing the slit,
diverges to the objective O from which it emerges in a parallel
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beam and is incident on the dispersing prism P; is reflected from
the posterior silvered face; returns through the prism; under-
goes an additional dispersion on emergence; returns through the
objective and forms an image of the slit for light of each wave-
length in the half of the focal plane not covered by the diaphragm.

With all prism spectroscopes, the images of the slit are some-

S
P o

what curved, the rays from the ends of the slit being more devi-
ated than those from the middle. If the deviation is great, as
when a train of prisms is used, the curvature is very marked. The
light from the ends of the slit suffers greater deviation than that
from the middle because it traverses the prism in directions in-
clined to a plane normal to the refracting edge of the prism.

For the study of the parts of a spectrum below the visible red
and beyond the violet, care must be taken that energy of these
particular frequencies is not absorbed by transmission through
the parts of the apparatus. The prism and lenses of instruments
designed for the study of the infra-red region can be made of rock
salt, sylvanite, or fluorite, while those of instruments designed for
the ultra-violet region quartz is employed. Or, the optical sys-
'tem may be entirely reflecting so that no energy is lost by ab-
sorption through transmitting media. In this case concave mir-
rors replace the lenses, and a diffraction grating takes the place
of the prism.

The reflection spectrometer can be reduced to its lowest terms
by ruling the grating on the surface of a concave mirror. With
the concave diffraction grating no lenses and no other mirrors are
required. The radius of curvature of concave gratings is usually
6, 10, or 21.5 feet. The Rowland mounting, which is the one
usually employed, is described in Exp. 45. '
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64. Qualitative Spectrum Analysis. — The grouping of lines
in the emission spectrum of any element is characteristic of that
element and is the same whether the element is alone or mixed
with others. After a survey has been made of the spectra of all
elements, the elements present in any given specimen can be
determined by matching the lines appearing in the spectrum of
the specimen with those of the elements. This fact is the basis
of qualitative spectrum analysis. The sensitivity of the method
is so great that 10~1° gm. of calcium or 10! gm. of strontium can
be detected.

To vaporize a substance various methods are available. Some
substances can be vaporized in the flame of a Bunsen burner.
Others require an electric arc or a spark discharge. Some lines
of a given substance are made visible by a source at one tempera-
ture, while other lines of the same substance are made visible
only at a considerably higher temperature. In the Bunsen flame,
strontium chloride gives lines due to strontium chloride molecules,
bands due to the oxide, and one line due to the metal strontium.
The arc and the spark spectra consist of about 40 lines, all due
to the metal itself. Some elements give two or more entirely
different spectra depending upon the means used in rendering
them luminous. For example, the spectrum of nitrogen at low
pressure produced by an ordinary spark discharge consists of
bands, whereas when considerable electric capacity is introduced
in parallel with the spark gap, an entirely different spectrum is
produced consisting of sharp lines. Oxygen has three spectra.
The introduction of capacity in parallel with the spark gap pro-
duces an oscillatory discharge which is of higher current value
than the discharge without the capacity. (Reference — Baly,
Spectroscopy, 1905, pp. 550, Longmans, Green & Co.)

66. Quantitative Spectrum Analysis.— When white light
traverses a colored substance placed in front of the slit of a spec-
troscope an absorption spectrum is formed. In the case of solu-
tions, the amount of weakening in any particular part of the
spectrum depends upon both the thickness of the layer traversed
by the light and the concentration of the solution. Whenever
the absorption of light is a constant function of the concentration
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of the solution, the value of the concentration can be determined
from the absorption. Absorption at any part of the spectrum is
proportional to concentration so long as there is no chemical or
physical change in the solution. It should be kept in mind, how-
ever, that some substances in aqueous solution become less hydro-
lyzed at greater concentrations, for example, the chlorides and
bromides of copper, cobalt, iron, and nickel. Again, the absorp-
tion spectrum of a solution of a solute when not ionized may be
different from that of the same solute when ionized. Changes in
temperature also produce changes in the absorption produced by
certain substances in aqueous solution, for example, the salts
of iodine, cobalt, and chromium.

The absorption spectrum of a solution containing two or more
solutes may have bands due to each solute separate from the
bands due to spectra of the other solutes. In such a case the
concentration of each solute can be determined as though the
others were not present. However, if the bands instead of being
separate are superposed, the quantitative analysis is usually im-
possible. ,

We will now derive one of the relations used in the determina-
tion of the concentration of solutions. If the intensity of the
light incident upon a layer of unit thickness be I, then the inten-
sity of the emergent light will be aI, where a is a constant having
a value less than unity. On traversing a second layer of equal
thickness, the intensity of the emergent light is a (al) = Ia%
And on traversing n similar layers, that is, a thickness n, the
intensity I’ of the emergent light is

I' = Ia~,
1
N\n
or o= (IT) - (157)

The consideration will be simplified by expressing the quantity
a in terms of a layer of such thickness N that I’ = 0.1 . Then

the above equation becomes

a = (0.1)¥,

2~
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The quantity 1/N, that is, the reciprocal of the thickness of
specimen required to reduce the intensity of the emergent light
to one-tenth that of the incident light is called the extinction
coefficient. Representing the extinction coefficient by the symbol
E, the preceding equation becomes

a = (0.1)E,
or loga = Elog0.1 = —E,
' 1, I
but from (157) == log T
Wh E=— 1 lo r 158
ence, = o g T ( )

Since the absorption of a solution is proportional to the con-
centration and to the thickness of layer, it follows that if the
thickness be constant the concentration is directly proportional
to the extinction coefficient. Thus we may write

== (159)

Thus the concentration of a solution can be found from a de-
termination of the ratio I'/I. The absorption of light of any
particular frequency can be determined from a photometric com-
parison of two lights of the same frequency one of which has
traversed the solution.

The spectrophotometric method for the determination of the
concentration of solutions is susceptible of a high degree of pre-
cision. For example, the concentration of solutions of Cu ions,
- made by dissolving a known mass of pure metallic copper, of
concentrations from 0.25 per cent to 2.50 per cent, can be readily
determined with an error of less than 0.05 per cent. For very
dilute solutions the method is much more precise than chemical
analysis. For certain classes of substances the method offers
considerable advantage as to speed. For example, after the pre-
liminary curves have been made for solutions of known concen-
tration, it is possible to estimate quantitatively dilute solutions
of lead, calcium, ammonia, sulphates, and chlorides, in from 15 to
20 minutes, with an accuracy far beyond any chemical method.
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The estimation of the concentration of solutions by means of
the intensity of the absorption bands of their spectra is often
called spectrocolorimetry. (Reference — Kriiss, Kolorimetrie und
quantitative Spectralanalyse, pp. 291, Leipzig, 1891.)

66. Colorless Solutions. — The concentration of a solution
that does not absorb light cannot be directly determined by
spectrophotometric means. But by adding a reagent that either
frees a colored ion, produces a colored salt, or develops a turbidity
depending upon the concentration of the solution, the value of
the concentration can be determined. For example, potassium
iodide is a colorless salt whereas the iodine ion is violet. This
ion can be liberated by Cl, HNO;, or K:Cr;0; in acid solution.
The last reagent, however, would be inadmissible on account of
the color added by the reagent itself. The following additional
examples illustrating the method employed to produce either a
color or a turbidity in a colorless solution are taken from a bac-
calaureate thesis presented to Purdue University by Mr. George
Spitzer.

For the estimation of the concentration of a salicylic acid solu-
tion, ferric chloride was added, thereby forming a colored solution
of ferric salicylate.

For the estimation of a dilute solution of ammonium hydrate
add Nessler’s solution. The solution becomes yellow due to the
nitrogendimercurousiodide formed.

For the estimation of the concentration of a solution of ammo-
nium nitrate, add sulphuric acid together with phenol and am-
monia. The solution becomes yellow due to dissolved ammo-
niumnitrophenol.

For the quantitative estimation of phosphorus in fertilizers,
first dissolve the phosphates by adding sulphuric acid. Neutral-
ize by adding ammonia. Then form color by adding ammonium
molybdate solution. In dilute solution the color is a light trans-
parent yellow. In more concentrated solutions there is a yellow
precipitate. This degree of concentration should be avoided.

In the determination of the concentration of magnesium chlo-
ride, add sodium acid phosphate. The turbidity produced by
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the formation of insoluble magnesium phosphate is a measure of :
the quantity of magnesium in the original solution. :

For the estimation of calcium in a solution of caleium ch‘lbnde,-
add ammonium oxalate. The turbidity produced by. the. forma-
tion of insoluble calcium oxalate is a measure of the qua.ntlty of
calcium in the original solution.

Cane sugar can be determined as quickly and Wlth as grea.t
precision by means of a spectrophotometer as by means of a
polarimeter. The cane sugar is first turned into invert sugar by
the addition of hydrochloric acid and heat. After making this
slightly alkaline it is added to sufficient boiling alkaline cupric
tartrate (Fehling’s solution) to make a faint blue color. During
this operation cuprous oxide is formed in proportion to the amount
of cane sugar. The cuprous oxide is filtered, washed, dissolved
in nitric acid, and diluted with water to a definite volime. After
heating the solution to expel nitric oxide gas, the concentration
of cuprous oxide in the solution is determined by means of the
spectrophotometer. From empirical tables one can find the
amount of cane sugar corresponding to this amount of cuprous
oxide.

67. The Spectrophotometer. — An instrument by means of
which the illumination at different parts of a spectrum can be

measured is called a spectrophotometer.
Spectrophotometers are used for the
< © measurement of the amount of light of
/" _#\ [ ¢_ various frequencies emitted by a lumi-
nous source, and also the amount of light
of the various frequencies absorbed by a

" given substance.

A spectrophotometer consists essen-
tially of a spectroscope arranged for the
passage of two beams of light, to which
is added a device for comparing the brightness of the light of any
given frequency in the two beams. The comparison of the bright-
ness is usually made by means of a pair of polarizing prisms. -

A convenient spectrophotometer can be made by placing in
front of the slit of the spectroscope collimator, C, Fig. 92, two

%8s
Fia. 92.



\

THE SPECTROPHOTOMETER 155

Nicol prisms N; and N3, and a plane glass mirror m, from which
has been removed a horizontal stripe of silver. Light from the
source S, will traverse the transparent stripe, the Nicol prism N,
and the spectroscope; while light from the source S, after trav-
ersing the Nicol prism N;, and being reflected from the silvered
surface of m, will be transmitted by the Nicol prism N, and the
spectroscope. In the image plane of the spectroscope will appear
the spectrum of the source S, crossed horizontally by the spectrum
of S;. By means of a diaphragm with a vertical slit placed in
the image plane, the attention can be fixed on two adjacent
bright patches of the same frequency, one due to light from one
source and one due to light from the other.

It will now be shown that the ratio of two illuminations pro-
duced by lights of the same frequency can be determined from
the angle between the planes of polarization when the two parts
of the field of view are equally bright. If the Nicol N,, Fig. 92,
were not present, all of the light in the focal plane
of the telescope which originated at S, would
vibrate in some plane op, Fig. 93, with an am-
plitude represented by the length ox. If the
Nicol N: were in place but the Nicol N, were
absent, all of the light in the focal plane which
originated at S; would vibrate in some plane oa If both prisms
were in place, the light, which on leaving N, vibrated in the plane
op and had an amplitude ox, would emerge from N, with the
vibration in the plane oa and have an amplitude

oy = oz cos 6.

Thus, the ratio of the amplitudes of vibration of light that has
traversed two polarizers to that which has traversed one equals
the cosine of the angle between the planes of polarization of the
two beams of light.

And since the energy of a vibration of constant frequency
varies as the square of the amplitude, the ratio of the illumina-
tions of the light which has traversed two Nicols to that which

has traveled one is
T:[—_ 20—23—2] = cos?6. (160)

Fia. 93.
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Consequently, by rotating either Nicol, thereby changing 6, we
can vary by a known amount the illumination in the foecal plane
produced by the source S;. Now the illumination in the focal
plane due to light from S, is unaffected by rotation of either
Nicol. Therefore, by rotating either Nicol till the two light
patches in the focal plane are equally bright, we can find a nu-
merical measure of the intensity, for the given frequency, of the
source Sy compared with that of S;.

When the circular scale attached to the rotatable Nicol is so
arranged that the zero reading indicates that the planes of polar-
ization of the two Nicols are parallel, the above equation can be
employed. Sometimes, however, the scale is arranged so that
the zero reading indicates that the planes of polarization of the
two Nicols are perpendicular to one another. In this case, call-
ing the angular reading 6, we have

}’[= cos? (90 — 6)] = sin?é. (161)
1

w
Fic. 94. Fig. 95.

68. The Lemon-Brace Spectrophotometer. — This instru-
ment * consists of two collimators C, and C,, Fig. 94, a telescope
T, and a Brace prism P. This prism is equiangular and is divided

* The Astrophysical Journal, Vol. 39, p. 204.
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into two parts by a plane bisecting the edge AA4’, Fig. 95. The
two inner faces are polished, and on one is deposited a horizontal
stripe of silver. The two halves of the prism are then cemented
together. .

Light from the source S,, Fig. 94, is reflected from the silver
surface and forms a narrow horizontal spectrum of S, in the focal
plane of the telescope. Light from the source S, traverses the
prism above and below the silver stripe, and forms two horizontal
spectra of S; in the focal plane of the telescope. The field of
view thus consists of spectra of the two sources, side by side and
in the same plane. The positions of the collimators can be so
adjusted that in any vertical line in the field of view the light from
the two sources will be of the same wave-length. The attention
can be fixed on a limited portion of the two spectra of the same wave-
lengths by means of an eyepiece diaphragm containing a vertical slit.

One collimator is provided with a pair of Nicol prisms N, and N,.
By rotating one Nicol, the parts of the two spectra uncovered by

. L

Fio. 96.

the diaphragm can be brought to the same brightness. After a
photometric balance has been obtained, the ratio of the illumina-
tions produced at the collimator slits by S; and S; can be obtained
from (160) or (161). This is also the ratio of the luminous in-
tensities of the two sources.

59. The Martens-Koenig Spectrophotometer. — This instru-
ment,* Fig. 96, is especially suited to the spectrophotometric

* Annalen der Physik, Vol. 12, p. 984.
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study of absorptive media. The optical system is shown in plan,
and in elevation in Fig. 97. It is essentially a two-lens prism
spectroscope with a photometric device depending upon polariza-~
tion. The slit and the refracting edge of the dispersing prism
are horizontal. Cemented to each lens is an acute-angled prism
p and p’ which prevents light reflected from the lens surfaces tc

Fia. 97.

obscure the field of view. In the diagram, W is a polarizing de-
vice called a Wallaston prism, N is a Nicol analyzer, Z is a glass
biprism of very obtuse angle. The entrance slit is divided by a
tongue into two slits, a and b, through which pass two luminous
pencils S; and S..

The collimating lens renders each pencil parallel. The prism
P disperses each pencil into its component colors. The Wallas-
ton prism divides each pencil into two plane polarized pencils,
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— one with the plane of polarization vertical and the other hori-
zontal. Each of these four pencils fills the two inclined faces of
the biprism Z. On emergence from this prism there are eight dis-
persed plane polarized beams, four due to light from one slit and
four due to light from the other. The lens cemented to p’ focal-
izes each of these beams into a spectrum in the plane of the
diaphragm d.

The changes produced in the two beams of light as they traverse
the optical system may be illustrated by the diagram, Fig. 98.
Throughout the diagram, the light that entered at the slit b,
Fig. 97, is distinguished by the symbol “f ”” and that which en-
tered at a by the symbol “2.” A polarized beam with vibrations
in the horizontal plane is distinguished

by the subscript &, and that with vibra- |»'
tions in the vertical plane by the sub- il : sl N [s5
script v. If the Wallaston prism W and ) %o I
the biprism Z, Fig. 97, were not present, 1) ! :
there would be formed in the plane of ’I 1) 4 ke
the diaphragm d two spectra of unpolar- Fra. 98, v

ized light 1 and 2, Fig. 98. With the
Wallaston prism in the path of the beams giving rise to these spectra,
each spectirum is divided into two spectra of polarized light 1,, 1,, 2.,
and 2;. All four beams giving rise to these spectra impinge on both
faces of the biprism Z. The parts of the four beams that strike the
upper face of the biprism will be refracted downward. On emer-
gence these parts are distinguished in the diagram by “primes.”
The parts of the beams that strike the lower face will be bent
upward. On emergence these parts are distinguished by “sec-
onds.” All light spectra therecby formed are focalized in the
plane of the diaphragm D. The biprism is so tilted that the two
rows of spectra instead of being superposed are side by side. In
Fig. 98, the two rows of spectra 24, 2./, 14/, 1,/ and 2", 2,”, 1,’',
1,”” are shown in different planes. Actually they are side by
side in one plane perpendicular to the page.

In the eyepiece diaphragm d there is a slit, parallel to the slits
a and b, which cuts off all the light except a narrow strip from
each of the adjacent spectra. One-half of the slit is illumined by
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monochromatic plane polarized light from one source, while the
other half is illumined by light of the same frequency polarized
in the plane at right angles to the first from the other source.
By interposing a Nicol prism N between the diaphragm and the
eye, the two halves may be brought to equal brightness. The
frequency of the light can be altered by rotating the observing tube
about a horizontal axis through the dispersing prism.

For the spectrophotometric comparison of two light sources,
the instrument is provided with two right-angled prisms z and ,
o Fig. 99, by means of which light from two sources
— can be reflected into the slits a and b in the direc-
Nyl tion of the axis of the collimator. By means of
3!'1:' ground glass diffusing screens M and N, the illu-

mination of the slits is rendered uniform through-
| out their length.

N The ratio between the luminous intensities of
two light sources for any particular frequency will
now be determined. Denote the luminous intensities for any
particular frequency of the sources, sending light through the slits
b and a by J: and J;, respectively, and the illuminations at the
diaphragm d by I, and I, respectively. Then,

I. = ks, (162)
and Iy = koJy, (163)

where k, and k., are constants depending upon the position of the
luminous sources with respect to the diffusing screens, and the
reflecting and absorbing powers for light of the particular fre-
quency of the diffusing screens and optical system of the instru-
ment.

The two patches of light at the diaphragm d due to the two
sources are plane-polarized in planes at right angles to each other
and are of the same frequency. On looking at the diaphragm
through a Nicol prism one sees the circular field of view divided
into two halves by a sharp line. In one position of the Nicol, one-
half of the field will appear dark and the other bright, while if
the Nicol be rotated 90° the half formerly dark will be bright
and the half formerly bright will be dark. At an intermediate

Lo s

Fia. 99.
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position the two halves of the field of view will be equally bright.
In Fig. 100, let OM be the plane of polarization of light in the
half of the field of view coming from the slit ¢, and let ON be
the plane of polarization of the light from the slit b. Let OH
and OC represent the amplitudes of vibra-

tion of the light constituting these two
halves of the field of view. Let OQ be
the plane of transmission of the Nicol
prism when the two halves of the field
of view are of equal illumination. This
equality requires that the angle 6 be such
that the projection of OH on OQ equals the projection of OC on
0Q. That is, OQ is perpendicular to HC. It follows that

OG = OH cos = OC sin 6.

That is, the amplitudes of vibration of the light in the field of
view of the instrument coming from the slits @ and b are in the
ratio

o 0 N
" F1a. 100.

o
ocC

And since intensity of illumination varies directly with the square
of the amplitude of vibration,

= tané.

L[_©HE)* . ,
:[—b'[— W]— tan?é. (164)
From (162), (163), and (164),
I, _ kuJy — 2 y
Yl ™ tan? 4. (165)

That is, for a partic'ula.r' frequency, the ratio of the luminous
intensities of the two light sources is

7 .
.T; = ks tan?0. (166)

60. Colorimetry. — If the extinction coefficient of a solution
were the same for light of all frequencies, the relative concentration
of two specimens of the same solution could be obtained from a
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direct comparison of the intensity of color of the light transmitted
by them when illumined by white light of the same intensity. But
there are no substances that have a constant extinction coefficient
through a wide range of frequencies. That is, a comparison of
color intensities will not give accurate results when applied to
solutions which absorb light through a wide range of frequencies.
In case, however, the absorption be limited to a single narrow
region of the spectrum, the light emerging from two specimens of
the solution of different concentrations will show the same depth
of color when the thickness of the two specimens traversed by
the light is inversely proportional to their concentrations. This
— method of comparing the concentrations of
E two specimens of the same solution is called

— colorimetry.
In the Dubosc colorimeter, the two speci-
mens are contained in the vertical tubes T' and
T/ T, Fig. 101, provided with plane glass bottoms.
| The thickness of the layers traversed by light
is varied by moving up or down the inner tubes
T' and T, provided with plane glass bottoms.
By means of a mirror below the apparatus,
light is sent through the two specimens. After

T T traversing the specimens, the light illumines the

: upper faces of the total reflecting prisms P and
P;. On looking through the eyepiece, E, one
sees two patches of colored light separated by a sharp line. The
thickness of each layer is given by a scale attached to the containing
tube. When the thickness of the layers have been adjusted till the
two halves of the field of view are of the same depth of color, the
concentrations of the two specimens are inversely proportional to
their thicknesses.

With this instrument, when the concentrations are not too dif-
ferent, settings can be repeated with a maximum departure from
the mean of about 2 per cent. The definiteness of the balance
between the two halves of the field of view can be improved by
adding a difference of hue to the difference of brightness. For
example, suppose two concentrations of a bluish solution are being

Fia. 101.
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compared. On interposing between the eye and the eye-lens a
sheet of glass or gelatine tinted yellow, the two halves of the field
of view will appear green when they are of equal brightness. But
if one-half be brighter than the other, this will be yellowish-green,
and the darker half of the field of view will be bluish-green.

The concentration of a solution is expressed in several ways.
The per cent concentration by weight and the per cent concen-
tration by volume are often used. The concentration is also
expressed in terms of a molar solution and in terms of a normal
solution. A molar solution is one containing one molecular weight
of the substance, in grams, to one liter of solution. A normal solu-
tion of a reagent is one which contains in one liter that proportion
of the molecular weight of the reagent, in grams, which corresponds
to one gram of available hydrogen. For example, a molar solution
of CuS0; + 5 H,0, in water, contains 63.57 + 32.07 4+ 64 + 5 (2 +
16) = 249.64 gm. of copper sulphate and enough water to make one
liter of solution. A normal solution of the same substance con-
tains 3 (249.64) gm. of copper sulphate per liter of solution. Again,
a normal solution of Na,SO; is of one-half the concentration of the
molar solution. A normal solution of NaHSO, is of the same
concentration as the molar solution.

61. Rotation of the Plane of Polarization. — When plane
polarized light is incident on certain crystals or on certain carbon
compounds, the plane of polarization of the emergent light is not
that of the incident light. Some substances rotate the plane of
polarization about the axis of the beam in the clockwise direction
as viewed by an observer looking toward the approaching light,
while others rotate it counterclockwise. The former substances
are called right-handed, dextrogyric, or positive, and the latter
substances are called left-handed, levogyric, or negative.

It is found that the amount of rotation produced by a given sub-
stance is directly proportional to the thickness, and depends upon
the temperatures of the specimen and upon the wave-length of the
incident light. In the case of solutions of active substances in in-
active solvents, the rotation is proportional to the concentration.
When light traverses more than one substance, the rotation equals
the algebraic sum of the rotations due to the separate substances.
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The rotation, in degrees, of a decimeter length of solution,
divided by the concentration in grams per 100 cc., is called the
spéczﬁc rotation of the solute at the given temperature, for light of
the given wave-length. Thus, if 10 grams of a certain sugar be
made into an aqueous solution of 100 cc. and the rotation produced
by a layer 20 em. thick be 13.3°, the specific rotation of the sugar
at the concentration and temperature of the measurement and
with the particular wave-length of light employed is

_(133)100 _ .0
[a] = o0 - 66°.5.
Usually, specific rotations are given at 20° C. and for sodium light.
The specific rotations of various sugars at 20° C., and at t° C.,
at concentration ¢, with sodium light, are as follows:

Sucrose, [al = 66.51 4+ 0.0045 c. [c = 5 to 65.]
[a)y = [alw — 0.0144 (¢ — 20).

Dextrose, [a)e = 52.5 + 0.0188 c. [No change with temp.]

Levulose, [a]e = —88.13 — 0.2583 ¢ + 0.6714 (t — 20).

Invert sugar, [a]: = —19.8 — 0.036 ¢ 4+ 0.304 (t — 20).

Lactose, [aln = 52.53. [No change with concentration.]
lale = [al» — 0.07 (¢ — 20).

Maltose, [ale = 140.37 — 0.0184 ¢ + 0.095 ¢.

From the definition of specific rotation it follows that the rota-
tion due to a solution of an active substance in an inactive solvent
is

: 0

_ lalim _ [a]le
T v 100’

(167)

where a is the specific rotation, [ is the length of solution traversed
by the light, m is the mass of substance, v is the volume of solution,
and c is the concentration usually expressed in grams of substance
per 100 cc. of solution.

The angle of rotation of the plane of polarization of a substance
is different for light of different wave-lengths. This variation of.
the rotatory power with the wave-length of the light is called
rotatory dispersion.
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The phenomenon of the rotation of the plane of polarization is
extensively applied in the identification of rotary active substances,
and in the determination of the concentration of solutions of such
substances. (Reference — Landolt, The Optical Rotating Power of
Organic Substances and its Prctical Applicaations, pp. 751, The
Chemical Publishing Co., Easton, Pa.)

62. Half-shade Polarimeters. — An instrument for measuring
the angle of rotation of the plane of polarization is called a polarim-
eter or polaristrobometer. The obvious method of determining
the angle of rotation produced by any specimen would be to place
the specimen between two Nicol prisms set for extinction and then
rotate one prism till the field of view again becomes dark. The
trouble with this simple method is that the eye is not very sensitive
to small changes of brightness, and the mind cannot accurately
compare the brightness of two things unless seen simultaneously
and in juxtaposition. In the most sensitive method of measuring
the angle of rotation there is added to the two Nicol prisms a deyice
so arranged that the field of view is divided into either two or three
parts which are of equal brightness for a certain position of the
analyzer and which are of much different brightness when the
analyzer is but slightly rotated from this position. On account of -
the low brightness of the field at this sensitive point, the method is
called the half-shade method.

In the half-shade method, the plane polarized light traversing
the specimen consists of two beams with their planes of vibration
inclined to one another at a small angle. Without an analyzing
Nicol, both halves of the field of view will be of the same bright-
ness. But with an analyzing Nicol, the two halves will be un-
equally bright except when the principal plane of the analyzer
bisects the angle between the planes of vibration of the two beams
incident on the analyzer.

63. Laurent’s Half-shade Polarimeter. — In this instrument
the device used to produce the separation of plane polarized light
into two portions consists of a plate of quartz YXY” and a plate of
glass YX'Y’, Fig. 102, joined together along one edge. The plate
of quartz is cut with the optic axis parallel to the joint Y'Y”, and is
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of such a thickness that during the passage of light through it,
light in the extraordinary ray is retarded more than light in the
ordinary ray by an amount equal to one-half wave-length of the
monochrornatic light used. The glass plate is of such a thickness
that the light which traverses it is reduced in brightness, through
absorption and reflection, by the same amount
ag the light that traverses the quartz plate.

Suppose the monochromatic plane polarized
light incident on the compound quartz-glass
plate vibrates parallel to some line OB. The
part of the light incident on the glass plate
emerges vibrating in the same plane OB, but
the portion incident on the quartz emerges as
plane polarized light vibrating in some other
plane OA. It can be shown, though the proof will not be here
given, that the planes of vibration of the emergent light, OB and
OA, are equally inclined to the joint YY’. Consequently, when a-
Nicol prism is placed in front of the quartz-glass plate with the
principal plane parallel to the joint YY”, the field of view is uni-
formly bright. With the Nicol turned out of this position, even
very slightly, the two halves of the field of view are of very unequal
brightness. This quartz-glass plate is called Laurent’s half-
shade analyzer. The angle BOA between the planes of vibration
of the two plane polarized beams emerging from the half-shade
analyzer is called the half-shade angle.

As usually employed, the half-shade analyzer is placed between
two Nicol prisms with the joint between the quartz and glass plates
slightly inclined to the principal plane of the polarizing Nicol. The
polarizing prism is illumined with monochromatic light and the
analyzing prism is turned till the field of view is uniform. - The
specimen under investigation is then placed between the half-
shade analyzer and the analyzing prism. If a rotation of the
plane of polarization has been produced, one-half the field of
view is now dark and the other is bright. The angle the
analyzing Nicol must be turned to bring the two halves to
equal brightness is the amount of rotation produced by the
specimen.

Fia. 102.
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64. The Lippich Half-shade Polarimeter. — The only essential
difference between the Lippich and the Laurent polarimeters is in
the half-shade analyzer. The Lippich half-shade analyzer con-
sists of either one or two supplementary Nicol prisms placed be-
tween the polarizer and analyzer of the instrument. The optical
system of the Lippich half-shade polarimeter with triple field is
represented in Fig. 103. After being rendered nearly mono-
chromatic by traversing the light filter F, the light traverses the
illuminating lens O and polarizer P. On emerging from the polari-
zer. one-third of the beam enters the prism L,, one-third enters the

— = | |
TR D
Fia. 103.

prism Ly, and the remainder proceeds directly to the diaphragm D,.
Thus, three beams traverse the specimen C, the analyzer A, and the
telescope T. The field of view consists of a circle divided into three
stripes of equal area and sharply marked from one another by two
sharp lines.

The principal sections of the prisms L, and L,, constituting the
Lippich half-shade analyzer must be nearly coplanar. The angle
between.the principal plane of the Lippich analyzer and that of the
polarizer is the half-shade angle. To produce variations in sensi-
tivity, this half-shade angle is changed by rotating the polarizer.
When the light source and analyzer diaphragm D, are at conjugate
foci of the illuminating lens O, the polarizer diaphragm D, is uni-
formly illumined. The eyepiece is focalized on the polarizer
diaphragm.

The light in the middle stripe of the field of view is polarized at
right angles to the principal section of the polarizer P. The light
in the outer stripes is polarized at right angles to the principal
sections of the prisms L, and L,. Thus, the plane of polarization
of the light in the middle stripe and that in the outer stripes are
inclined to one another at the half-shade angle. If there were no
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light lost by reflection or absorption in traversing the Lippich
analyzer, then when the principal section of the analyzer A bisects
the half-shade angle, the entire field of view would be uniform, and
when the analyzer A is turned however slightly from this position
the middle stripe would have a very different brightness than the
outer stripes. Since, however, there is a loss of light in traversing
the Lippich analyzer, it follows that
in the zero position, the principal
section of the analyzer A does not
bisect the half-shade angle.

On account of its great sensitivity
and ease of manipulation,'the Lippich
half-shade triple-field polarimeter is
in extensive use. One pattern, de-
signed by Landolt for the examina- -
tion of specimens contained in tubes
or vessels of any shape, is illustrated
in Fig. 104. A specimen tube C is
shown in position for observation. Another, enclosed in a constant
temperature device J, is shown in the foreground. By means of
the lever h, the polarizing Nicol can be rotated, thereby altering
the half-shade angle, and consequently the sensitivity of setting.
The analyzer A can be rotated by means of the lever H, or,
after tightening the clamping screw k, by means of the screw b.
The reading on the scale S is made by aid of the verniers v and
reading lenses LL.

66. The Quartz-wedge Compensation. — As light of different
frequencies is rotated to a different extent by optically active
substances, the polarimeters above described require the use of
monochromatic light. This requirement may be obviated by the
addition of a simple device. This device consists of a set of dextro-
and levorotatory quartz wedges of acute angles placed between
the crossed Nicols of the polarimeter and so arranged that different
thicknesses of either dextro- or levorotatory quartz may be inter-
posed in the path of light. The double quartz-wedge system used
by Schmidt and Haensch consists of two wedges, A and B, Fig. 105,
each capable of being moved up or down between two fixed

Fia. 104.
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wedges C and D. One movable and one fixed wedge are levorota-
tory, and the other two are dextrorotatory, as indicated.

With the wedges in the positions shown in the diagram, the sys-
tem gives zero rotation. By moving either A or B the system can
be made either levo- or dextrorota.tory In this manner, the

rotation produced by a specimen between the crossed Nicols of a
polarimeter can be neutralized. The amount that A
or B must be displaced from the zero position to pro-
duce compensation is a measure of the rotation of
the plane of polarization produced by the specimen.

A quartz-wedge compensator cannot be used in
testing a specimen having a rotation dispersion much
different from that of quartz. As quartz has nearly
the same rotation dispersion as has cane sugar,
some form of quartz-wedge compensator is usually
employed on saccharimeters, that is, on polarimeters designed
especially for the testing of sugars. The effects due to the slight
differences in the rotation dispersions of sugar and quartz are over-
come by the use of a potassium-bichromate light filter.

66. Sugar Scales. — A saccharimeter is a polarimeter with a
scale graduated to indicate directly the per cent of pure sugar con-
tained in the dissolved sample. When the temperature, length of
specimen tube, mass of sugar sample, and volume of aqueous solu-
tion are constant, the rotation varies only with the purity of the
sample. If, in addition, the sugar sample contains no active
substance other than sucrose, and if the weight of the sample
be that which a specimen of pure sucrose would need to have
to give a reading of 100 on the saccharimeter scale, then the
reading for the given sample will give directly the per cent sucrose
in it.

In saccharimeters of French design, the 100-degree point is the
scale reading due to the rotation of the plane of polarization of
spdium light produced by a plate of dextrorotatory quartz one
millimeter thick cut perpendicular to the optic axis. Experiment
shows that about 16.29 gm. of sucrose dissolved in water to 100 cc.
at 20° C., in a tube 200 mm. long, gives the same rotation as 1 mm.
of quartz. This number, 16.29 gm., was adopted in 1896 by the

Fia. 105.
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International Congress of Applied Chemistry as the “normal
weight "’ for the French Sugar Scale. :

In most saccharimeters made outside of France the Ventzke
Sugar Scale is employed. The International Sugar Commission
in 1900 adopted the following definition of the 100-degree point of
this scale. “The 100-degree point of the saccharimeter scale is
obtained by polarizing a solution containing 26.000 gm. of pure
sucrose (weighed in air with brass weights) in 100 true cc. at 20° C.,
in a 200-mm. tube in a saccharimeter whose quartz-wedge com-
pensation must also have a temperature of 20° C.” The white
light must be filtered through a 3-cm. layer of 3 per cent potassium-
bichromate solution.

The relations between one degree angular measure, one degree
French sugar scale, and one degree Ventzke sugar scale, for sodium
light, are as follows:

1° Angular = 4.61553° French = 2.88542° Ventzke.
1° French = 0.21666° Angular = 0.62516° Ventzke.
1° Ventzke = 0.34657° Angular = 1.59960° French.

67. Saccharimetry. — When but one active substance of
known specific rotation is present in a specimen, the percentage of
this substance in the specimen can be determined from a single
polarimetric observation. This is called the simple polarization
method.

When a specimen contains more than one sort of sugar, it is
possible to determine the percentage of one of the sugars provided
that the rotatory power of this sugar can be altered a known
amount. This method involves two polarimetric observations and
is called the method of double polarization. There are three im-
portant means by which the rotatory power of certain sugars can
be altered a definite amount. They are, (a), change of one sort of
sugar into another by the action of acids or alkalis; (b), change of
one sort of sugar into a different material by fermentation; (c),
change of the rotatory power of one component by change of
temperature.

(a) When hydrochloric acid is added to an aqueous solution of
sucrose (cane sugar), each molecule of sucrose is changed into two



SACCHARIMETRY 171

molecules — one of d-glucose (dextrose) and ome of fructose
(levulose). The resulting mixture rotates the plane of polarization
in the direction opposite that which does sucrose, and is called
“invert sugar.” The process of forming invert sugar is called
“inversion.” In the same manner, lactose is changed into equal
parts of galactose and d-glucose, while maltose is turned into d-
glucose, with an accompanying change of rotatory power.

Again, when weak solutions of glucose, fructose, invert sugar,
lactose, or maltose are heated for a sufficient length of time in
presence of sodium hydroxide, they become inactive due to the
formation of mixture of dextro- and levorotating sugars. Sucrose
is unchanged by this treatment.

Of these actions, the most important in practical saccharimetry
is the inversion of sucrose for the determination of the percentage
of sucrose in a sample containing noninvertable sugars. Suppose
that the rotation produced by the solution before the addition of
the acid is 6, that by the noninvertable sugars is 8, and that the
rotation produced after inversion is ¢’. Represent the specific
rotations of sucrose and invert sugar by [a:] and [a:], respectively;
the concentrations of the sucrose and invert sugar in the solution
by ¢ and ¢, respectively; and the length, in decimeters, of the
column of solution before inversion by I. Then, from (167), before
inversion,

= 0.01 [a;] cd + B. (168)

In inverting sucrese, it is customary to add to the solution 10
per cent of acid, by volume. Thus, the invert sugar occupies 1.1
the volume occupied by the sucrose. In an experiment, the re-
quired correction is commonly made by the use, after inversion,
of a tube having the length 1.11. Thus, after inversion,

¢ = 1.1 X 0.01 [as] el + 8.
Thus the change of the rotation produced by the inversion of the

sucrose 18
0 — ¢ = ([a] al — 1.1.[az] &l) 0.01.

Neow, the molecular weight of invert sugar, (CeH20s + CeH1205),
is 360, while that ef sucrose, (CisH2Oy)), is 342. Thus, the ratio
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of the concentration of invert sugar to the sucrose from which it
was derived is
360

5 = 1.053.

ole
®

Substituting this value of ¢; in the preceding equation,
0 — 0 = cl ({a;] — 1.053 X 1.1 [az]) 0.01.
Whence, the concentration of sucrose in the solution

—¢ .
&= (e = 1.158 [a]) 0.01

(169)

After the concentration ¢; has been determined, the concentra-
tion of any known noninvertable component can be found. Thus,
representing by [as] and cs, respectively, the specific rotation and
concentration of this component, we have from (167)

ﬁ = 0.01 [(13] Cal,

and from (168) B =0 —0.01 [a)] cd.
_ 6 — 0.01 [a1] Cll.
Whence, &= "—oollall asll (170)

(b) Some yeasts ferment completely certain sugars and do not
affect others. For example, the yeast Saccharomyces cerevisioe
ferments completely d-glucose, d-fructose, d-mannose, d-galactose,
sucrose, and maltose, but does not act upon l-xylose, l-arabinose,
rhamnose, sorbose, and lactose: Saccharomyces apiculatus ferments
completely d-glucose, d-mannose, and d-fructose, but does not act
upon galactose, sucrose, maltose, and lactose. Thus, if a specimen
contains one fermentable sugar in presence of other unfermentable
sugars, the percentage of the fermentable component can be de-
termined by observing the rotation before and after this compo-
nent has been fermented.

(c) Changes of temperature affect greatly the value of the
specific rotation of fructose (levulose), arabinose, and galactose;
affects to a less degree that of maltose and lactose; and does not
affect that of d-glucose (dextrose). Due to this effect, solutions of
pure invert sugar at 90° C. are optically inactive. This fact is the
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basis of methods for determining the percentage of d-glucose mixed
with sucrose in products that do not contain other sugars sensitive
to changes of temperature. (Reference — Browne, Handbook of
Sugar Analysis, pp. 787, 1912, New York, John Wiley and Sons,
Inc.)

68. Clarification of Sugar Solutions. — Under even the best of
conditions the field of view is so faint when a polarimetric setting
is made, that care must be taken to have as much light as possible
traverse the solution. For the clarification of sugar solutions
there are three substances in common use. Alumina cream is
prepared by adding alum solution to an excess of hot washing soda
solution and collecting the precipitate. After washing this pre-
cipitate with boiling water it is mixed with water to the consistency
of thin cream. ‘

Basic acetate of lead solution is made by grinding in a mortar
two parts of recently ignited litharge with one part of acetate of
lead and enough water to form a paste. Boil in about half the
mass of water, filter, and place in a well-stoppered bottle.

Sodium sulphite solution consists of 100 gm. of sodium sulphite
in one liter of water.

To clarify a colorless cloudy solution containing about 20 gm.
sugar per 50 cc. add about 3 cc. alumina cream and a drop of basic
lead acetate. If the sugar solution is yellow add alumina cream as
above and more basic lead acetate solution. In case the sugar
solution is brown add 2 ce. sodium sulphite solution, and then add
slowly lead acetate solution, constantly shaking till no more pre-
cipitate is formed.

After waiting till the precipitation is complete, dilute the solution
to 100 cc. and filter. The sugar solution is now ready to fill the
2-decimeter specimen tube.

Exp. 26. Determination of the Illuminating Power of a Gas
with a Bar Photometer by the Equality of Brightness Method

THEORY OF THE EXPERIMENT. — Read Arts. 2629 and 31 (d).
The illuminating power of a gas is the luminous intensity of a flame
burning at a specified rate. Luminous intensities are expressed
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in terms of the luminous intensity of the Hefner lamp or in terms
of the international candle. The international candle is 42 of a
‘hefner. It is practically realized by a spermaceti candle § inch
in diameter burning at the rate of 120 grains per hour. An ordi-
nary paraffin candle burning at the rate of 8 grains per hour has
a luminous intensity of very nearly one international candle.

It is common American practice to require illuminating gas to
give a luminous intensity of not less than 16 candle power when
burning in a special Argand burner at the rate of 5 cubic feet per
hour under a pressure of 30 inches of mercury and at a temperature
of 60° . Since a burner operates best for a given rate of flow of
gas at a definite pressure, it is necessary that all measurements be
made under conditions differing but slightly from standard con-
ditions. A standard Argand Burner is designed to be operated
under the abové standard conditions. But if the gas be dry, and
the rate of burning and the pressure do not differ much from stand-
ard conditions, the volume that the gas actually consumed would
have had if the pressure and temperature had been standard can
be obtained by means of the fundamental law of perfecé gases, as
follows: Denoting the observed temperature, pressure, and volume
by ¢, p, and v, respectively, we may write

P = Rm (t + 460), 17)

where ¢ is expressed according to the Fahrenheit scale.
Representing by ¢/, the volume which the same gas would have
had under standard conditions, we may write

309 = Rm (60 + 460). (172)

Dividing each member of (172) by the corresponding member

of (171),
, _ 520pv

~ 30 (¢ + 460)

If, however, a wet meter be used, the gas will be saturated with
water vapor and the above equation will be inapplicable. In this
case, find the value of v by means of Table 12. An inspection
of this table shows that, to change the volume of illuminating gas,
saturated with water vapor, and at any temperature and pressure, to

(173)
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the volume +t would have had at 60° F., and 30 inches of mercury,
subtract one per cent for each 4° F. above 60° F., and add one per cent
for each 0.3 inch above 30 inches of mercury pressure.
ManiPuLATION. — The apparatus used in this experiment in-
cludes a graduated bar, Fig. 106, at one end of which is a standard
Argand burner connected to the gas supply through a pressure
regulator, manometer, and meter. At the other end of the bar are
two comparison candles. Sliding on the bar is a box containing

Fia. 106.

the photometer screen. In this experiment, the Joly cube will be
found eminently satisfactory. This is shown in detail above the
sliding box.

If the two blocks forming the Joly cube are not of equal thickness
and scattering power, the position of equal brightness is determined
by taking the mean of two scale readings when the blocks appear
equally bright — first, when the blocks are facing in one direction,
and then when the cube is rotated 180° about an axis through the
plane of the tinfoil screen.

If one light source be much more mtense than the other, the
point of sctting will be much nearer one source than the other.
This diminishes the accuracy of the setting and also the degree of
approximation with which (120) will apply. In the present experi-
ment, two candles are to be used, close together and equally distant
from the photometer screen.

See that the two sources of light are at the points corresponding
to the ends of the scale of the photometer bar. As the bar usually
docs not extend as far as the end of the effective length of the bar,
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this test is usually made by the aid of a pair of plumb lines at each
end of the scale, the plane of each pair being normal to the bar.
Examine the scale of the meter until you are certain you can read
it correctly. See that the water in the meter is at the height it had
when the meter was calibrated. With the stopcock at the burner
closed, turn on the gas at the meter, and see if the hand of the
meter moves. This will show if there be a leak between the meter
and burner.

Adjust the gas supply till, on lighting the lamp, there is a con-
sumption of very nearly five cubic feet of gas per hour. Then
adjust the draft of the lamp till the flame just ceases to tail over
the chimney. Light the candles and when they are burning freely,
extinguish them. Weigh them, together with the supports, to
within 10 milligrams. Replace the candles and relight them.
Record the hour, minute, and second, the meter reading, the baro-
metric height, the water height in the manometer attached to the
pressure regulator, and the temperature as given by the ther-
mometer in the gas meter.

Move the photometer screen back and forth till the two halves
of the block are equally bright. Record the scale reading. Ro-
tate the photometer screen 180°, make a new setting, and record
the new scale reading. In the same manner, make at least five
pairs of readings. The reading of the scale is facilitated by re-
flecting on to it, by means of a mirror or white card, light from the
gas flame. During these measurements there must be no light in
the room except that due to the two sources being compared.

Extinguish the candles and the gas flame, recording the time in
hours, minutes, and seconds. Record the meter reading and re-
weigh the candles.

Note the readings of the barometer and the manometer, éxpress-
ing both in the same units. The gas pressure equals the sum of
the barometric pressure and the pressure given by the ma-
nometer.

If a dry meter be used, compute, by means of (173), the volume
which the gas consumed in the given time would have occupied if
the pressure had been 30 inches of mercury and the temperature
had been 60° F. If, however, a wet meter be used, compute the
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volume under standard conditions by means of the rule prmted
in italics at bottom of p. 174.

From the mass of paraffin burned, and the time occupied in
burning, compute the candle power of the pair of candles. With
this value, together with the readings on the photometer bar, com-
pute, by means of (120), the actual candle power of the gas flame.

With this value, together with the previously computed value of
the volume reduced to a pressure of 30 inches of mercury and a
temperature of 60° F., compute the candle power which the same
gas would have when burning at the rate of 5 cu. ft. per hour under
the standard pressure and temperature. This is the illuminating
power required.

Exp. 27. Determination of the Illuminating Power of a Gas
with a London Gas Referees’ Photometer

THEORY OF THE EXPERIMENT. — Read Arts. 26-29 and 31(e)
and the preceding experiment. The gas referees of London, who
supervise the daily tests of the gas supplied by all the gas com-
panies of London, have developed an apparatus with which the
photometric tests can be made quickly, and with sufficient pre-
cision, by untrained observers. To distinguish from the *“bar
photometer,” Fig. 106, in which the photometer screen slides on a
bar or track, this apparatus, Fig. 107, is often called the “table
photometer.” In this apparatus, the photometer screen is the
photoped P, situated at a fixed distance of one meter from the
Harcourt pentane 10-candle-power standard lamp PL. The gas
under test is burned in a standard Sugg 24-hole Argand burner A.
The distance between this burner and the photoped can be changed
by means of therod B. Thisrod is graduated so as to give directly
the candle power of the gas flame when the two halves of the photo-
ped are equally bright. The pressure regulator R and the gas
meter M are of the wet type.

ManipuraTiON. — Fill the tank or satura.tor of the pentane
lamp two-thirds full with pentane. This must be done in a room
in which there is no flame of any sort. While the lamp is in use,
the depth of pentane in the saturator should never be less than
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three millimeters. Adjust the lamp till the following conditions
are fulfilled. (a) The axis of the photometer passes through the
air tube of the lamp. (b) The center of the burner is over the
reference line of the photometer marked on the table. (c) The
distance from the burner to the chimney is 47 mm. (d) The mica
window is so placed that no light from it shall fall on any part of

Fia. 107.

the apparatus. (¢) The bubbles in the spirit levels are in the
center of the vials. The valves on the!saturator and on the de-
livery tube may now be opened, and if the gas will not ignite, the
~ draft must be forced by blowing into the funnel of the saturator.
Adjust the flame to a height of 1 cm. above the cross bars. Let
the flame burn steadily for 30 minutes before taking photometric
observations.

Meantime see that the water in the meter is at the height it had
when the meter was calibrated. Test for any leak between the
meter and the burner by closing the stopcock at the gas burner,
opening the supply stopcock, and observing whether the pointer
of the meter moves.

Regulate the flow of gas to 5 cu. ft. per hour. If the meter be
one such that one revolution of the pointer corresponds to one-
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twelfth of a cubic foot, we will have a flow of 5 cu. ft. per hour when
the pointer makes one revolution in one minute. In adjusting the
flow of gas, take the time of three revolutions of the pointer by
means of a stop watch. This time should not differ by more than
three seconds from three minutes. Adjust the draft of the lamp
till the flame is just on the point of smoking. The gas should burn
steadily at least 15 minutes before taking photometric observa-
tions. The chimney must be clean.

In making a photometric setting, slide the rod carrying the
Argand burner until the two halves of the field of the photoped are
of equal brightness. Note the temperature and pressure of the
gas. Correct the volume of gas to 60° F. and 30 in. of mercury
as described in the previous experiment. Calling the corrected
volume ¢/, and assuming that illumination is proportional to v’, the
true candle power is obtained by multiplying the photometric scale
reading by 5/v'.

The normal density of pentane is 0.630 g. per cc. An increase
in density of 0.01 g. per cc. increases the candle power of the pen-
tane lamp about one per cent. Consequently, the saturator should
be emptied at the close of the day’s work. The stock of pentane
should be stored in a metal tank with a tightly fitting screw plug.

Exp. 28. Calibration of a Carbon Incandescent Lamp to be used
as a Working Standard

TaEORY OF THE EXPERIMENT. — Read Arts. 26-29 and 31(¥).

MANIPULATION. — In this experiment, the lamp being cali-
brated and a standard Hefner lamp are mounted on the ends of
a horizontal divided bar on which slides a Lummer-Brodhun
photometer. The brass base of the lamp being calibrated should
be marked on the side toward the photometer so that in future
use the same snde of the lamp may be turned toward the photom-
eter.

Adjust the height of the flame of the Hefner lamp until the
image of the tip viewed by means of the eyepiece A, Fig. 57,
coincides with the horizontal mark on the ground glass in front
of the lens. After adjusting the flame, do not take photometric
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observations for at least 15 minutes. Meantime, connect the
incandescent lamp in series with a storage battery and control
rheostat. Connect a suitable voltmeter across the lamp terminals.
Adjust the height of the Hefner lamp flame, the photometer
screen, and the incandescent lamp till their centers are at the
same height above the bar.

At an observed voltage, obtain the photometric balance. This
is best accomplished by moving the photometer back and forth
through the balance point by smaller and smaller displacements.
Any error due to lack of symmetry of the photometer is eliminated
by averaging the result obtained when the photometer is in one
position and that obtained when the photometer is rotated 180°
about a horizontal axis perpendicular to the bar.

Take a series of voltmeter and corresponding photometer read-
ings extending from 30 per cent below to 20 per cent above nor-
mal voltage. Tabulate hefners, candle power, and volts. Plot a
curve codrdinating candle power and volts.

In this experiment, there is a wide variation in the intensity
of one of the lamps, and consequently in the illumination of the
photometer screen at the moment a reading is made. This allows
some readings to be made with a greater precision than others.
A constant screen illumination at the time of a reading can be
obtained by clamping the carriage carrying the photometer and
one of the light sources to the ends of a rod of the proper length
to give the desired illumination. This coupled system is then
moved as a unit toward or away from the other light source till a
balance is obtained.

Exp. 29. Determination of the Mean Horizontal Candle Power
and Mean Spherical Candle Power of an Incan-
descent Lamp

THEORY OF THE EXPERIMENT. — Read Arts. 26-29 and 31(f).
Except from a point or other symmetrical source, the distribu-
tion of light is not the same in all directions. The mean of the
luminous intensities in a horizontal equatorial plane, expressed
in candle power, is called the mean horizontal candle power of the
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source. This may be obtained by averaging the candle power
readings made at 10° or 15° intervals about the horizontal equa-~
torial plane of the lamp. If the horizontal light distribution is
not too ununiform, the mean horizontal candle power can be also
obtained from a single reading made on a lamp rotating about
its vertical axis at a speed of from 200 to 300 revolutions per
minute.

If a sphere be imagined to be described about a source as center,
antd the surface of the sphere be divided into a large number of
elements of equal area, and the candle power of the source be
measured along the radius of the sphere through the center of
each of these elements, the mean of the results so obtained is
called the mean spherical candle power of the source. If the source
be a lamp which can be rotated, —an incandescent lamp, for
example, — the mean spherical candle
_ power can be obtained from a much
smaller number of observations. The
theory of the method will now be con-
sidered.

The luminous intensity of a source is,

by definition (Art. 26), the luminous flux
emitted by the source per unit solid
angle. When the flux is ununiformly
distributed, it will be convenient to take
the sum of the amounts of flux traversing
definite parts of an imaginary sphere hav- Fia. 108.
ing the source as the center. In Fig. )
108, let the surface of such a sphere be divided into » narrow
zones of equal angular width by planes normal to the axis of the
lamp. We will now find an expression for the flux emerging
from any zone along the radius of the sphere, in terms of the
area of the zone and the mean luminous intensity of the source
measured along a radius of the sphere passing through a mid-
point of the zone. The total flux from all the zones, divided by
4 7, i.e., the number of steradians in a sphere, will give the mean
spherical intensity of the source.

To fix the ideas, consider the zone of which m is a mid-point.
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Represent by ¢ the angle between the radius OD passing through
m and the base yz of the spherical segment of which the zone is
the curved face. Representing by w, the solid angle subtended
at the source by the zone, and by I, the mean luminous intensity
of the source measured along radii passing through the zone, we
have the value of the flux emitted by the zone

F4, = I¢’U)¢.

Representing the area of the zone by Ay, and the radius of the

sphere by r, 4
Wy = 72'*;.

The area of the zone equals the product of the mean circumfer-
ence and the linear width measured along the arc. The mean
radius of the zone is mn = om cos ¢. The width is 27r/2 n.
That is,

Ay = %21rrcos¢.

Whence, the flux emitted radially through the zone is

2 72 I
Fol= Iuw,] = 2220505,

And the flux from all the zones
_ §'27tcosply
F=73, S

Therefore, the mean spherical candle power is, (117),

L[~ £]-3(E2d). (174)

By directing a photometer toward the source along a line
passing through a mid-point of a zone, the luminous intensity in
that direction can be measured. If the source be spinning about
the axis PP’ with a speed of from 200 to 300 revolutions per min-
ute, the photometer will indicate the mean luminous intensity Ie
throughout the particular zone. By taking such an observation
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along the line passing through a mid-point of each of the n zones,
we can compute I, by means of (174).

Instead of maintaining the axis of rotation of the lamp fixed
in space and directing the photometer along the lines A0, BO,

CO, etec., it will be experimentally much x
easier to maintain the axis of the photom- )7

eter horizontal, and change the axis of rota- .
tion, of the lamp so that A0, BO, CO, etc., &~ \o

are successively in the axis of the pho- 3%

tometer. The angle ¢ is then equal to

the angular displacement of the axis of P
rotation PP’ from the vertical, Fig. 109. x’

A convenient rotator by means of which Fia. 109.

an incandescent lamp can be rotated about an axis inclined at
any desired angle to the vertical is represented in Fig. 110.
The spinning of the lamp is effected by means of a flexible
cable extending from the lamp through a
bent tube to a grooved pulley belted to a
motor. The inclination of the axis of spin
to the vertical is indicated by a divided
circle shown in the figure.

As an example of the use of (174), sup-
pose that we take n = 12, that is, the angle
at the center of the lamp subtended by
il each zone is 15°. Then the angle between
Fra. 11. the axis of rotation and the line connecting

the source and the mid-point of the first
zone is 7° 30’. Suppose that when the axis of rotation makes
an angle of 7° 30’ with the vertical, the photometric reading is
40 candle power. Then the first term of the series indicated in

(174) is
r cos 7° 30"
( 2% 12 )40'

To facilitate the computation for a 12-zone sphere, the value
. of the quantity within the parenthesis of (174) corresponding to
each of the 12 inclinations of the lamp is given below.
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x CO8 ¢ « CO8 ¢
¢ 2 (12) \ ¢ 2(12)

7° 30’ 0.130 97° 30’ 0.017
22° 30’ 0.121 112° 30’ 0.050
37° 30’ 0.104 127° 30" ¢ 0.080
52° 30’ 0.080 142° 30’ 0.104
67° 30’ 0.050 157° 30’ 0.121
82° 30’ 0.017 - 172° 30’ 0.130

ManipuLATION. — In this experiment will be used a 2-meter
bar with a Lummer-Brodhun photometer. The working stand-
ard will be a calibrated incandescent lamp maintained at constant
voltage with the aid of a rheostat and voltmeter. Mount in the
rotator the lamp under test and connect to a storage battery,
rheostat, and voltmeter. The centers of the two lamps and the
photometer screen are to be in line parallel to the photometer
bar. In this experiment, the same side of the standard lamp
should be directed toward the photometer that was so directed
when the lamp was calibrated.

Adjust the potential differences at the terminals of the lamps
till the two halves of the photometer screen are so nearly of the
same color that there will be no difficulty in matching brightness.
Thereafter, these potential differences must be constant. With
the lamp under test rotating at the rate of from 200 to 300 revo-
lutions per minute, make a photometric setting when the axis of
rotation is vertical, and also when it is inclined to the vertical
at angles of 74°, 221°, 371°, 521°, 671°, 821°, 971°, 112}°, 1273°
1423°,1573°, and 1721°. Knowing the candle power of the stand-
ard lamp at the voltage used in this experiment, the candle power
of the lamp under test in the above 13 directions can be computed.

Plot a polar curve showing the distribution of the mean lumi-
nous intensity, in a vertical plane, of the lamp under test. To
construct this curve, draw from a center 24 radial lines 15° apart. .
Along these lines, lay off distances from the center proportional
to the observed candle powers in the various directions. Join
these end points by a smooth curve. The curve should be placed .
on the paper so as to show the distribution of luminous intensity
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of the lamp when the base of the lamp is above and the tip
below. :

Compute the mean horizontal candle power and the mean
spherical candle power.

Exp. 30. Determination of the Candle Power of an Incandescent
Lamp at Various Voltages by the Flicker Method

THEORY OF THE EXPERIMENT. — Read Arts. 26-28 and 30.
After the temperature of an incandescent filament has reached a
certain value, the luminous intensity increases rapidly with in-
crease of temperature. That is, at higher temperatures the light
emitted per unit of electric power is greater than it is at lower
temperatures. For this reason, principally, metallic filament lamps
that can be operated at high temperatures are now generally
employed in preference to carbon filament lamps. ‘

The object of this experiment is to measure the luminous in-
tensity of a metallic filament lamp at a series of voltages extend-
ing from below the normal to above the normal voltage. The
comparison lamp is to be another incandescent lamp maintained
at constant voltage and which has been calibrated in terms of a
Hefner lamp or a standard candle. As the colors of the two
lamps will often be considerably unlike, the equality of brightness
method of comparison will be unsuitable. For the present ex-
periment will be employed a flicker photometer of the Bechstein
type, Figs. 59 and 60. ‘

MANIPULATION. — As in the equality of brightness method
(Exp. 26), the sources to be compared are at the ends of a gradu-
ated track on which moves a carriage supporting the photometer.
Adjust the resistance in circuit with the comparison lamp till the
potential difference at the terminals of the lamp has the value it
had when the lamp was calibrated. If the lamp under test be
designed for 110 volts, adjust the resistance in circuit till the
voltage is at first 95 volts.

Before starting the motor attached to the flicker photometer,
move the photometer to the position in which the two parts of
the field of view appear to be most nearly equally bright. This
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would be the setting if the equality of brightness method were
to be employed. Now start the motor in slow rotation. The
two parts of the field of the instrument flicker strongly. Gradu-
ally increase the speed of rotation till the flicker disappears. On
moving the photometer back and forth on the track one will find
that there is a short space in which no flicker occurs, and that when
the photometer is outside this space there is flickering. By grad-
ually diminishing the speed of the motor, the space of no flicker
is shortened. At the proper speed the space of no flicker is re-
duced to a very short distance. After adjusting to this critical
speed note the scale readings of the ends of the space of zero
flicker. The mean of these readings is to be used in finding the
values of r; and r; to be substituted in (120).

In the same manner take readings when the potential differ-
ence at the terminals of the lamp under test is 100, 105, 110, 115,
120, and 125 volts. With candle powers as abscissz and potential
differences as ordinates, plot a curve coérdinating these quanti-
ties for the lamp under test.

Exp. 31. Determination of the Principal Focal Lengths, the
Chromatic Aberration and the Longitudinal Spherical
Aberration of a Converging Lens

THEORY OF THE EXPERIMENT. — Read Arts. 32-35. Longi-
tudinal spherical aberration is measured by

f=r
Rl (175)
where f and f’ represent, respectively, the principal focal lengths
for direct axial and for marginal axial pencils of white light, and 6
represents the angle expressed in radians subtended at the image
by the distance from the center of the lens to the center of the
marginal pencils. ‘
Chromatic aberration is measured by

fr _fb ’
a (176)
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where f., f», and f represent the principal focal lengths of the
lens for direct axial pencils of red, blue, and white light, respec-
tively. ’ '

For the determination of these four principal focal lengths, the
corresponding principal foci and equivalent points must be lo-
cated, and the distances between them measured. They can
be located directly by means of an axial beam of parallel light.
The easiest means for obtaining fairly monochromatic light is
by interposing a piece of colored glass in a beam of intense white
light. A sunbeam is parallel and intense but is not always avail-
able. The method to be employed in this experiment for pro-
ducing an intense axial beam of parallel light will be made clear
by reference to Fig. 111. The small hole O in a metal plate C is

Fie. 111.

strongly illumined by the image of the crater of an arc lamp A.
If the hole be covered by a piece of glass, either clear or colored,
ground on the side adjacent to the metal plate, light will
leave the hole as from a small bright object. After trav-
ersing the lens L under test, the light is reflected by the
mirror MM'.

In the diagram, the equivalent points of the lens under test
are indicated by E, E’. If the distance OE’ equals the principal
focal length of the lens, the emergent rays will be parallel to the
principal axis of the lens. If the mirror MM’ be normal to the
principal axis, the reflected light will retrace its path, and the
image of O will be formed at 0. For the purpose of examining this
image, it may be displaced to one side by slightly tilting the
mirror.
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MANIPULATION. — In the apparatus used in this experiment,
Fig. 112, the lens holder H is mounted on a horizontal circular
plate capable of rotation about a vertical axis. The lens holder
H can be moved along a diameter of the plate by means of a rack
and pinion 7T'; and the plate with its attachments can be moved
along a divided track as shown in the engraving.

By adjusting the lens B, focalize an image of the crater of the
arc lamp A on the ground face of the colorless glass covering the
aperture O. This gives us a brilliant small spot of light which

Fia. 112.

is to be used as the “object ” in the subsequent measurements.
Place close to the lens L under test a diaphragm D, containing a
small central aperturc. Adjust the inclination of the mirror M
and the position of the lens carriage till there is formed on the
white painted surface of C an image of the object 0. Now place
a piece of red glass over the aperture O and, by means of the rack
and pinion T, adjust the position of the lens relative to the axis
of rotation of the supporting circular plate till a slight rotation of
the latter will cause no displacement of the image. During this
adjustment the carriage must be moved so as to keep the image
at its maximum sharpness. When this adjustment is complete,
the distance from the axis of rotation of the circular plate to the
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screen C is the principal focal length f, of the lens L for a direct
axial pencil of red light.

Substitute for the diaphragm with the central aperture one
that uncovers a concentric zone of the lens, and find the prin-
cipal focal length of this zone of the lens. Repeat for the
marginal zone. During these two latter adjustments it is un-
necessary to alter the position of the lens relative to the axis of
rotation.

Measure the mean diameter of each of the zonal apertures.
If r represents the mean radius of the zonal aperture, the angle at -
the image subtended by the mean radius of a zonal aperture

r _ 1 afr .
—) degrees = 573 tan (:f)radlans.

0 = tan™! (
These values of § and the values of the focal lengths for central
and marginal pencils substituted in (175) give the magnitude of
the longitudinal spherical aberration of the lens when red light
traverses it in the direction used in the experiment. For a simple
lens bounded by surfaces of unequal curvature, the magnitude of
the longitudinal spherical aberration will be different when the
direction of light through the lens is reversed.

Replace the diaphragm with the central aperture, substitute a
piece of green glass for the red glass, and find the principal focal
length f, for the three apertures. Substitute a piece of blue
glass for the previous piece, and find the principal focal length fp
for the three apertures. By means of (176) compute the magni-
tude of the chromatic aberration of the given lens.

Plot a curve coérdinating longitudinal spherical aberration and
mean radius of the zonal aperture.

NorEe. — If precise measurements are not required, but only the illustration
of the accurate methods for the determination of the properties and constants
of lenses and lens systems, much simpler apparatus can be used than that de-
scribed in Exps. 31, 32, 33, and 35. For this purpose, the Farwell-Stifler Op-
tical Bench, sold by the Standard Scientific Company of New York, will be
found useful.
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Exp. 32. Determination of the Principal Focal Length of a
Diverging Lens

THEORY OF THE EXPERIMENT. — Read Art. 32. By definition,
the principal focal length of a negative lens is the distance between
the point from which an incident direct axial pencil of parallel
light appears to diverge and the principal point of emergence of
the lens. In Fig. 113, E,’ and E, are the equivalent points of the
negative lens L, under test. If a direct axial pencil of parallel

Fre. 113.

light be incident on the lens from the left, and if after emergence
the pencil diverges from a pomt F, the principal focal length of
the lens is f; = F\E,;.

In the method to be employed in this experiment, the incident
axial pencil of parallel light traversing the lens from left to right
is obtained by the use of a small bright object O, a supplementary
positive lens L;, and a plane mirror M. By arranging the appa-
ratus so that an image of the object O shall be formed on the screen
C, which image shall remain stationary when the lens under test-
is rotated, the nodal point E;, will be located. Since the lens is
bounded on both sides by the same medium, this nodal point is
the principal point of emergence for light traveling through the
lens from left to right. If the lens L, under test be removed, an
image of the object O will be formed at F; which can be located
by means of a white screen. The distance F.E; is the principal
focal length required. ‘

ManipuLaTION. — Use is made in this experiment of the same
Lens Testing Bench employed in the previous experiment. Place
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a piece of clear ground glass in the holder of the screen C with
the ground side toward the screen. Adjust the lens B, Fig. 114,
till the aperture O is strongly illumined by the image of the
positive crater of the arc lamp A. Place the supplementary
converging lens L, on the bench, and by means of a white card
locate roughly the image of the object. Place between this
image and the supplementary lens, the lens under test mounted
in the rotatable carrier H. Put the mirror M in place, and
slide L; and L, back and forth till an image of O is formed on the
white surface of the screen C. Now, by adjustment of the rack
and pinion T, and by motion of the carrier, find the position of

.
~t=A% T ¢
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the lens under test such that if the lens be slightly rotated the
image will not move. Note the scale reading of the pointer P.
This indicates the position of the principal plane of emergence of
the lens under test.

It will be noted that besides the image due to light that has
been reflected from the mirror, there appears on the screen one
or more other images due to light that has been reflected from
the lens surfaces. The image due to light that has been reflected
from the mirror may be identified by noting the image which
moves when the mirror is slightly rotated.

Remove the diverging lens under test, turn the white back of
the mirror toward the light source, and locate the image F,, Fig.
113. Note the scale reading of the index p, Fig. 114. This in-
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dicates the position of the principal focus of the diverging lens
under test. The difference between the readings of P and p is
the principal focal length of the diverging lens under test.

Exp. 33. Location of the Equivalent Points and the Deter-
mination of the Principal Focal Length of
a Lens System

THEORY OF THE EXPERIMENT. — Read Art. 32. The equiva-
lent points of a lens system are located and the focal length de-
termined exactly as in the case of a single lens. One must first
find whether the system is positive or negative. If positive, the
method is as used in Exp. 31; if negative, a supplementary posi-
tive lens must be used as in Exp. 32.

In the first study of lens systems it will be convenient to use
systems consisting of fairly large lenses arranged as in some of the
standard eyepieces. The Ramsden eyepiece usually employed in
instruments provided with cross hairs consists of two plano-convex
lenses of equal focal length, with the convex surfaces facing one
another and separated by a distance equal to two-thirds . the
principal focal length of one of them.

When cross hairs are not to be used, a system can be designed
that will give less aberration than the Ramsden. The simplest
Huyghens eyepiece consists of two plano-convex lenses, with the
convex surfaces toward the light source, separated by a distance
equal to the mean of their principal focal lengths. The principal
focal length of the eye-lens is either one-third or one-half that of
the field lens. :

MANIPULATION. — By means of suitable clamps and rod, set up,
as in Fig. 115, two lenses arranged as in a Ramsden eyepiece.
Stop the field lens by a diaphragm provided with a central aper-

‘ture. By examining the emergent beam of light with the aid of a
white card one will find that the system is positive for light travers-
ing it in either direction. Proceeding as in Exp. 30, locate an
equivalent point and measure the principal focal length. Rotate
the system 180° about a vertical axis, locate the other equivalent
point, and measure the principal focal length.
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Now set up, as in Fig. 116, two lenses arranged as in a Huyghens
eyepiece. The lens of shorter focal length is the eye-lens and should
be placed toward the screen C. The other lens is the field lens
and should be placed toward the mirror. Stop the field lens by a

)
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Fig. 116.

diaphragm provided with a central aperture. By examining the
beam of emergent light with a white card we will find that the
system is positive for light traversing it from the field lens to the
eye-lens, Fig. 116, and negative for light traversing it in the re-
verse direction. When positive, locate the equivalent points
and find the principal focal lengths as in the case of the Ramsden
eyepiece.
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To locate the equivalent points when the system is negative,
mount both lenses on the same side of the holder H, Fig. 117.
Place between the source and L. an auxiliary positive lens Ls,

. “"_»- X
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and locate the corresponding equivalent point and find the prin-
cipal focal length as described in Exp. 32.

Make diagrams of the four cases which show the positions of
lenses, equivalent points, and principal focal points of both systems.

Exp. 34. Study of the Eye by Means of Kuehne’s Model

THEORY OF THE EXPERIMENT. — Optically, the human eye
consists of an aperture P (called the pupil) in a diaphragm I
(called the iris), a lens L, and
a screen R (called the retina).
These parts are enclosed in a
nearly spherical opaque envelope
S provided with a curved trans-
parent round window C (called
the cornea). Filling the space
between the cornea and the lens
is a fluid called the aqueous
humor, and between the lens
and the retina a semi-fluid sub-
stance called the vitreous humor. Accommodation or focalizing
on the fixed retina the images of objects at different distances

Fic. 118.
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from the eye is effected by a change in the convexity of the lens
produced by a muscle around the edge of the lens.

In this experiment, the function of the various optical parts of
the eye, and some of the common errors of refraction, are to be -
studied by means of a model of the eye due to Kuehne. The
body of Kuehne’s Eye Model, Fig. 119, is a rectangular box with
one transparent side and one transparent end. In the front of
the box is a tube C which contains a round curved glass corre-
sponding to the cornea. A diaphragm I directly behind C repre-
sents the iris, and a convex
lens L represents the crystal-
line lens. The ground glass R
represents the retina; the
" water between the lens and
iris represents the aqueous
humor; and the water be-
tween the lens and ground °
glass represents the vitreous g‘“
humor. Infront of the cornea
is a frame A for the reception Fia. 119,
of spectacle lenses.

MANIPULATION. — Place the regular cornea on the eye and
insert the iris with the large pupil just behind it. Fill the model
with water to which has been added a few drops of eosin solution
to render the path of light through the water more visible. For
use as a luminous object place at a distance of about 70 cm. in
front of the cornea a box provided with a hole covered with ground
glass. An eight-armed cross is a very satisfactory form for the
hole. An incandescent lamp in the box renders the object bright
and distinct.

(a) Accommodation. — Place in the model the lower power lens
L so that the pin touches the iris. Move the retina back and
forth till a clear image appears. This is the normal position of
the retina. Compare the image with the object with respect to
size and orientation. ,

Move the object up and down, and from side to side, noting
how the image moves. Substitute for the lens L one of higher
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power L’ and, without disturbing the retina, move the object
nearer to or farther from the eye till a clear image appears on the
retina. Note what change has been made in the image. Com-
pare this image as to size, brightness, and sharpness with the
one formed when the other lens was used. How does the eye
accommodate itself for different distances?

(b) Spherical Aberration.— With the model as in the previous
experiment, remove the iris and note any change in the distinct-
ness of the image. Insert the iris with the small pupil and note
any change in distinctness. Focalize until a sharp image is pro-
duced and substitute the ring diaphragm I’ for the previously
used iris and note any change in the image. Can a sharp image
be now produced? Note any change of focus. Explain. Note |
the path of light in each case.

(c) Far Sight. — Replace the object at a distance of 70 cm.
from the cornea; use the large pupil and high power lens; and
focalize by adjusting the position of the retina. Now move the
retina forward 7 cm. and observe that the image on the retina is
blurred. Light is now traversing the model as in a far-sighted
eye. Find what kind and what power of spectacle lens placed in
the holder A will cause the image on the retina to be sharp. Note
the path of light through the model with and without the spec-
tacle lens. '

(d) Near Sight. — Remove the spectacle lens and refocalize
by adjusting the position of the retina. Move the retina back
8 cm. from this position. Light is now traversing the model as
in a near-sighted eye. Find the spectacle lens which placed in
the holder A will cause the image to be sharp. Note the path
of light through the model with and without the spectacle lens.

(e) Corneal Astigmatism. — Empty the eye and substitute for
the regular cornea a cylindrical lens, placing the axis of the lens
vertical. Refill the model and place it 70 cm. from the object.
Use the low power lens L and no iris. Note the path of light.
Observe that there is one position of the retina for which vertical
lines are in focus, a different position for which horizontal lines
are in focus, and no position for which lines in other directions
are in focus. Explain.
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" Adjust the retina till vertical lines are in focus and find what
kind of spectacle lens placed in the frame A will cause the image
of all lines of the object to be distinct. Note the power of the
spectacle lens and the position of the axis.

Remove the spectacle lens, adjust the retina till horizontal
lines are in focus, and find the spectacle lens that will cause all
lines of the image to be distinct.

Remove the spectacle lens, rotate the cornea 45°, and repeat
the procedure of the preceding part of this article.

(f) Vision without a Lens. — Remove the lens L and the spec-
tacle lens, and replace the iris and regular cornea. Determine
whether a'distinct image is formed for any position of the retina.
Find what spectacle lens will cause the image to be most distinct
when the retina is in its normal position.

Arrange all observations in a table and state clearly the con-
clusions to be drawn from each part of the experiment.

Exp. 36. A Study of Telescopes

THEORY OF THE EXPERIMENT. — A telescope is an optical instru-
ment designed to increase the magnitude and the resolution of the
retinal images of distant objects. The essential parts of a teles-
cope are two in number — first, a device for collecting light
emitted by the object and bringing it to a sharp focus; second, a
device for magnifying the image thereby produced. The first
device is called the objective; the second is called the ocular or
eyepiece. The objective may be a converging lens or mirror and
the ocular may be a converging or a diverging lens or lens system.

To be satisfactory a telescope must produce an image possess-
ing the following qualities: — distinctness, magnitude, brightness,
large field of view, freedom from curvature of field and distortion,
freedom from false colors. v

The degree of resolution and the brightness of the image de-
pend upon the diameters of the objective and ocular; the magni-
tude of the image depends upon the focal lengths of objective
and ocular; the field of view depends upon the arrangement of
the optical system; the flatness of field and freedom from dis
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tortion depend upon the curvature of the optical surfaces; free-
dom from false colors depends upon the focal lengths and the
arrangement of the parts of the optical system as well as upon the
material of which the lenses are made.

The Galilean telescope consists of a positive objective and a
negative ocular. When focalized for a distant object and most
easy vision the distance between the lenses is equal to the differ-
ence of the focal lengths of the two lenses. There is no real i image,
and consequently a cross hair cannot be employed.

The Kepler or simple astronomical telescope consists of a posi-
tive objective and a positive eye-lens. For most easy vision the
eye-lens is placed at its focal distance from the real image formed
by light that has traversed the objective. Cross hairs may be
placed in the plane of the image.

The Ramsden eyepiece consists of two plano-convex lenses of
the same focal length, with their convex faces toward one another
and separated by a distance equal to two-thirds the focal length
of either lens. The principal focal planes of the combination are
outside the combination at a distance one-fourth of the focal
length of either lens measured from the first principal plane of
the nearer lens. This eyepiece can therefore be used in place of
a simple ocular in any optical instrument with the advantage
of a clearer image and greater field of view.

The Huyghens eyepiece used in this experiment consists of
two plano-convex lenses, the eye-lens having a focal length equal to
one-third that of the field lens. They are separated by a dis-
tance equal to the difference of their focal lengths and the con-
vex surface of each is directed toward the objective. When
placed in front of an objective at the proper distance to give
most easy vision, the aerial object due to light that has trav-
ersed the objective is between the lenses of the eyepiece at a dis-
tance from the field lens equal to one-half the focal length of the
field lens. The real image is formed midway between the two
lenses of the ocular. If this ocular has small magnifying power,
cross hairs may be placed in the real image.

The Terrestrial Telescope consists of an objective and an erect~
ing eyepicce. The simplest type of erecting eyepiece consists of
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two convex lenses in combination with a simple positive eye-lens.
The two positive erecting lenses may also be added to either a
Ramsden or a Huyghens eyepiece. The image of the object,
formed by light after traversing the objective, is formed in the
focal plane of the first erecting lens. The light leaves the first
erecting lens with a plane wave front, and is incident on the
second erecting lens placed at any convenient distance from the
first. In case the simple one-lens ocular is used, the light from
the second erecting lens is brought to a focus in the principal focal
plane of the ocular. If the Ramsden or the Huyghens eyepiece
is used, the eyepiece must be so placed that the real image shall
be formed in the proper position for the particular eyepiece.

The object of this experiment is to assemble lenses so as to
form the various standard types of refracting telescope; to place
cross hairs where they can be used; to observe the size of the
field of view in each type and also the chromatic and spherical
aberration.

MAaNIPULATION, — The apparatus to be used in this experi-
ment consists of a horizontal bench b, Fig. 120, a supplementary

F1c. 120.

bed b’, together with various lenses, diaphragms, and cross hairs,
The objective can be mounted on the optical bench, and the
parts constituting the eyepiece can be mounted on the supple-
mentary bed. _ ]

From the collection of lenses of known focal lengths furnished
with the equipment, the student will assemble the following tele-
scopes: (@) Galileo’s; (b) Simple Astronomical; (¢) Astronomical
with Ramsden’s Eyepiece; (d) Astronomical with Huyghens’
Eyepiece; (e) Terrestrial with Huyghens’ Eyepiece.
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The Galilean Telescope.— Place the corrected lens marked “A ”’
in the support at the end of the optical bench nearer the object to
be observed. By means of a white card, find the position of the
real image. This position can be marked temporarily by means of
cross hairs mounted on the supplementary bed. Place the con-
cave lens H nearer the objective than the real image by a distance
equal to the focal length of the concave lens. The telescope
should now be in focus for the eye at rest. Note the size of the
field of view and any indication of chromatic or spherical aberration.

Replace the corrected objective A by the uncorrected objective
B and note any change in the aberrations.

In order not to strain the eyes, always have both eyes open when
looking into any optical instrument.

For this and each subsequent instrument studied, sketch a.

ray diagram in which are indicated the position of lenses, all

images (real, virtual, and aerial),
o and the cross hairs. A ray dia-
gram of the Galilean telescope, but
& without distances being mdlca.ted

is given in Fig. 121.
. The Simple Astronomical Tele-
Fie. 121.— ’s Tel X
. Galileo’s Telescope scope. — With the lens A as ob-
jective, find the position of the real image of the object sighted
upon. Mark this position with the cross hairs. Place the lens

+
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Fig. 122. — Simple Two-lens Astronomical Telescope.

E farther from the objective than this image by a distance equal
to the focal length of E. The telescope should now be in focus
for the eye at rest. Make the same observations and diagram
as in the case of the previous instrument.

Replace the corrected objective A by the uncorrected ob]ectlve
B and note any change in the aberrations.
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The Astronomical Telescope with Ramsden’s Eyepiece. — With
lens A as objective substitute for the simple ocular of the previous
instrument a Ramsden eyepiece formed by field lens G and eye-
lens F, Fig. 123. The distance between the incident principal
plane of the field lens and the real image produced by the light
after traversing the objective should be one-fourth the principal
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Fi1a. 123. — Telescope with Ramsden’s Eyepiece.
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focal length of one of the eyepiece lenses. Place the cross hairs in
the proper position.

Replace the lens A by lens B and note any tendency to aberra-
tion.

Make the same observations and diagram as in the preceding
cases.

The Astronomical Telescope with Huyghens' Eyepiece.— With
lens A as objective substitute for the Ramsden eyepicce a Huy-
ghens eyepiece formed of field lens J and eye-lens E. Place the

O+

+

&
: 1l

F1a. 124. — Telescope with Huyghens’ Eyepiece.

Huyghens eyepiece so that the aerial object, due to light that has
traversed the objective, is between the lenses of the ocular at a dis-
tance from the field lens equal to one-half the focal length of this
lens. The insertion of the field lens changes the position of the real
image to a position midway between the lenses. Place cross hairs
at this position. The telescope should now be in focus for the eye
at rest. Since the real image is curved and the cross hairs plaxe,
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parallax may appear in the border of the field. Reduce this by
stops, noting their position.

Replace objective A by B, noting any tendency to aberration.

Make the same observations and diagrams as before.

The Terrestrial Telescope with Huyghens' Eyepiece. — Use lens
A as objective. At a point distant from the real image equal
to its focal length place the first erecting lens C. Place the second
erecting lens D a short distance from the first (a distance equal
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Fra. 125. — Telescope with Huyghens’ Eyepiece and Erecting Lenses.

to its focal length provides the greatest correction of aberration),
and locate the real image. Place the Huyghens eyepiece as indi-
cated above with reference to this real image. The telescope is
now in focus for the eye at rest.

Make the same observations and diagram as in the preceding
cases.

Exp. 36. Determination of the Magnifying Power of a Reading
Telescope

TaeORY OF THE EXPERIMENT. — The magnifying power of a
telescope is the ratio of the angle at the eye subtended by an image,
to the angle at the eye subtended by the object. But since the
distance between the object and objective lens is so nearly equal
to the distance between the object and the eye, the magnifying
power is almost equal to the ratio of the angle subtended at the eye
by the image, to the angle subtended at the objective lens by the
object. Thus, in Fig. 126, the magnifying power

A
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The purpose of this experiment is to determine the magnifying
power of a reading telescope for various object distances. Two
methods are to be employed, — one of considerable precision that
involves the use of an accurately divided circular scale and a sup-
plementary telescope, and another, of much less precision, that
involves no accessory apparatus.

The Gauss Method. — Light traversing any optical path will
retrace the same path if proceeding in the opposite direction.
Thus, if in Fig. 126 the object be to the right of the eye-lens, then
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light from the object incident upon the eye-lens in the directions
represented will form an image at AB. In this case the image is
smaller than the object. The diminishing or minifying power of
the reversed telescope is then

m= %. '(178)
T

] )
Fia. 127. . -

That is, the minifying power of a telescope focalized for distant
objects equals the magnifying power.

This fact is the basis of the Gauss method for the determination
of magnifying power. In this method, the telescope under in-
vestigation, T', Figs. 127 and 128, is first focalized on some distant
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object and is then pointed away from a horizontal scale S;S.. An
auxiliary telescope 7", capable of rotation about a vertical axis
through C, is placed with its objective close to that of the telescope
under investigation, and is so adjusted that with the eye at F a
clear image of the scale is seen which does not move with reference
to the cross hairs of 7’ when the observer’s eye is slightly moved.

Fia. 128.

With the telescopes in line as in the figure, the field of view ex-
tends from A to B. If T be slightly rotated about the vertical
axis through C, its own field of view moves with it, while that of 7"
remains fixed. Let the auxiliary telescope T’ be rotated to near
the end of the observed field of view. Suppose that the inter-
section of the cross hairs coincides with the image of some division
a; of the horizontal scale when the angular position of the telescope

with reference to the circular scale is ¢;. Now let the auxiliary

telescope be rotated to near the other end of the field of view.
Suppose that now the intersection of the cross hairs coincides with
the image of some division a, of the horizontal scale when the angu-
lar position of the telescope is ¢s.

The angle at the eyepiece of the telescope under investigation
between rays from a, and a, is A, and the angle at the objective of
the same telescope between the emerging rays from a, a,nd ap is
(2 ~ ¢1). Thus, from Fig. 127,

[0 — G
M[ —m= _A_] - M (179)
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Approximate Method. — Since the tangents of small angles are
approximately proportional to the angles, the magnifying power of
an optical instrument approximately equals the ratio of the size of
the image seen when looking through the instrument to the size
of the image seen by the unaided eye. Thus an approximate value
of the magnifying power of a telescope can be obtained by com-
paring the size of the image of an object seen by one eye placed at
the eyepiece, with the size of the image of the same object seen by
the other eye without the telescope.

ManN1puLATION. — The Gauss Method.— Focalize the telescope
under investigation on a distant object. Arrange this telescope
and an accessory telescope as shown in Fig. 128, and determine
the magnifying power as above described. This is the magnifying
power for distant objects.

Approximate Method. — With the telescope five meters from a
scale adjust the eyepiece till the image of the scale seen by the eye
at the telescope coincides with the position of the
scale as seen by the other eye. When this adjust-
ment is effected, there will be no relative motion
between the two images as the head is moved
glightly from side to side. The first time the
attempt is made to view simultaneously a differ-
ent image with each eye, some difficulty will be
experienced in preventing the attention from being
fixed on one image. But usually a few minutes
training will suffice to develop the necessary con-
trol of the attention. Since the two eyes are on a Fia. 129.
horizontal line, the outside of the telescope will be
least obtrusive if the scale be vertical. When the telescope is in
proper adjustment, the two images of the scale will appear side by
side, the one seen by the unaided eye smaller than the other, some-
thing as shown in Fig. 129. In, this figure, three divisions of the
scale as seen by the unaided eye correspond to one division as seen
by the eye at the telescope. Thus for this particular object dis-
tance, the magnifying power is three.

In the same manner determine the magnifying power for object
distances of three and for 1.25 meters.
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Exp. 37. A Study of the Resolving Power of a Telescope

Theory of the Experiment. — Read Arts. 36 and 37. When the
images of two object points can be distinguished as separate
images, the two point sources are said to be resolved. Whether
two points are barely resolved, or not, depends upon one’s criterion
of resolution. Two observers will usually differ as to the exact
amount of separation necessary to constitute the limit of resolu-
tion. But for purposes of analysis and the assigning of a numerical
value to the resolving power of lenses it is customary to arbitrarily
postulate that two object points are at their limit of resolution
when the centers of the images are separated by a distance equal
to the radius of the central diffraction disk of one of them. Using
this convention, we find that the resolving power of a lens covered
with a diaphragm containing a narrow slit of width a is, (125),

(02 .

and that the resolving power of a lens with a circular aperture of
diameter a is, (128),

1)c S (st

The resolving power of a telescope equals that of the lens which
has the smallest resolving power. Since the resolving power of a
lens is proportional to the ratio of the diameter of the transmitted
beam of light to the focal length of the lens, Art. 36, the resolving
power of the short focus lenses composing the ocular of telescopes
is almost always larger than that of the objective. Whence, the
resolving power of a telescope is usually determined by that of the
objective.

The object of this experiment is to change the aperture of the
objective of a telescope directed toward an object consisting of
sharp parallel lines separated by a known distance till, from an
inspection of the image, the observer judges that the limit of reso-
lution is attained; from the distance u between the object and
objective, together with the distance D between the parallel object
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lines, the practical resolving power of the telescope is to be com-
puted by means of (121),

. u
=p (182)

DI -

This value of the practical resolving power is then to be compared
with the theoretical resolving power of the objective obtained by
means of (180) or (181) as the case may be.

Man1pULATION. — For this experiment the object consists of a
series of equally spaced parallel lines ruled on a glass plate and
illumined by transmitted light from a sodium burner. Such

Fia. 130.

gratings may be made by scratching through the black coating of
an exposed and developed photographic plate. In Fig. 130 the
object is shown at the center of the frame G.

To fit over the objective end of the telescope under test are pro-
vided two diaphragms M and I. The first is provided with a slit
the jaws of which are operated by a micrometer screw. The

" second is similar to the iris diaphragms used on cameras.

In the frame in front of the sodium flame place the grating with
the rulings vertical. Place in front of the telescope objective the
micrometer slit with the slit vertical. With one eye at the tele-
scope ocular, gradually open the micrometer slit and note the
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changes in the appearance of the image. In the report, explain
the appearances observed.

When near the limit of resolution, the bright image lines become
broader and nebulous at the edges. Beyond the limit of resolution
the field of view becomes without structure and evenly bright.
This appearance is different than that produced by longitudinal
spherical aberration. When a lens has spherical aberration, the
spaces between sharp image lines will be hazy but uniform.

With the telescope placed about 125 cm. from the object, and
with the micrometer slit wide open, focalize the telescope. Now
close the micrometer slit until the images of the lines of the object
can barely be distinguished as separate. Measure the distance u
from object to objective. Read the width a of the micrometer slit.
The distance D between adjacent object lines is marked on the
glass plate. By means of (182) compute the practical resolving
power of the objective. Assuming the wave-length of sodium light
to be 0.0000589 cm., compute by means of (180) the theoretical
resolving power of the lens with a slit aperture.

Substitute the iris diaphragm for the slit diaphragm and find
the practical as well as the theoretical resolving power of the lens
for a circular aperture. The diameter of the aperture in the iris
diaphragm when the object is just resolved can be measured with
sufficient precision by means of a steel scale.

Repeat readings with the slit diaphragm and with the iris
diaphragm for object distances of about 200 cm. and of 250 cm.

Exp. 38. Determination of the Refractive Index of a Substance
in the Form of a Prism

TaEORY OF THE EXPERIMENT. — Read Arts. 38—40.

ManNIPULATION. — In this experiment will be used a spectrom-
eter, Fig. 131, consisting of a collimator with the slit S directed
toward a sodium flame not shown in the figure, and a telescope 7'
mounted so that it can be rotated about a vertical axis through the
center of the horizontal divided circle A. The prism P under
investigation is placed on a table which is capable of rotation about
the same axis. The position of the telescope relative to the divided

t
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circle can be read by means of two verniers 180° apart. Some
spectrometers are also provided with a divided circle B for reading
the position of the collimator.

_ The manipulation of this experiment includes the leveling of the
collimator, telescope, prism and divided circular table, the adjust-
ment of the optical system of the telescope and collimator, the

Fic. 131.

measurement of the refracting angle of the prism, and the measure-
ment of the minimum angle of deviation of the prism when sodium
light is used. The data will then be at hand for determining by
(137) the refractive index of the material composing the prism
when transmitting sodium light.

Remove the telescope, point it toward a distant object, and ad-
just the position of the objective and the ocular till the image of the
distant object is in the plane of the cross hairs. When properly
adjusted, there is no motion of the image relative to the cross hairs
on moving the eye from side to side in front of the ocular.

Place a lamp in front of the collimator slit, replace the telescope,
and put the telescope and collimator in line. Without changing
the focus of the telescope, focalize the collimator till the image of
the slit is in the plane of the cross hairs.

By the aid of spirit levels and adjusting screws, make level the
table, telescope, and collimator.

Place the prism on the table of the instrument with the refract-
ing edge at the center of the table and directed toward the colli-
mator. Turn the collimator slit till it is horizontal. Move the
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telescope until an image of the slit reflected from one face of the
prism is seen in the eyepiece. Adjust the level of the prism till
the image is at the intersection of the cross hairs. Now move the
telescope till the image of the slit reflected from the other face of
the prism is seen in the eyepiece, and adjust the level of the prism
as before. Turn back the telescope and repeat the adjustment of
the prism till both reflected images come in the intersection of the
cross hairs.

The instrument is now in adjustment. The adjustment must
not be altered throughout the subsequent experiment.

To find the refracting angle of the prism, set the collimator slit
vertical and turn the telescope till the image of the slit reflected
from one side of the prism coincides with the intersection of the
cross hairs. Denote by T:° the angular position of the telescope
relative to the divided circle. Turn the
telescope till the image of the slit reflected
from the other face of the prism coincides
with the intersection of the cross hairs. Call
the present scale reading 7%°. Then from
Fig. 132, the angle through which the tele-
scope has been turned is

T —T°[=a+A+b=24. (183)

Fig. 132. In case the angular position of the telescope

is given by two verniers 180° apart reading

T' and T, respectively, then the true readings to be used in the
above equation are

T =31+ (T —180)] and T2° = 3}[TY + (Tu" — 180)].

To find the angle of minimum deviation of the prism, move the
telescope till light traversing the prism forms a spectrum in the
eyepiece. Now rotate the prism, keeping the sodium lines on the
cross hairs by moving the telescope, till the deviation is increased
when the prism is rotated in either direction. The prism is now
set at minimum deviation for sodium light. Note the scale read-
ing D,. Again rotate the prism and the telescope till another
spectrum is observed on the other side of the axis of the collimator.
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Find, as before, the position of minimum deviation. Note the
scale reading D,. The angle between the readings D, and D, is
twice the angle of minimum deviation 4.

Substituting these values of A and § in (137), compute the index
of refraction of the material composing the prism for sodium light.

Fia. 133.

Exp. 39. Determination of the Refractive Index of a Liquid

THuEORY OF THE EXPERIMENT. — Read Arts. 38 and 41. The
object of this experiment is to determine the refractive index of a
specimen of a given liquid by means of two or more of the refrac-
tometers described in Arts. 4349, and to compare the advantages
and disadvantages of the methods employed.

ManrtpuLATION. — The parts of the apparatus in contact with
the specimen must be scrupulously cleaned before and after the
experiment. The methods of cleaning, as well as the other manipu-
lative details of the experiment, are left to the ingenuity of the
student. With each instrument, light of the same wave-length
should be used.

Exp. 40. Determination of Specific Refractivities and the
Composition of a Mixture

THEORY OF THE EXPERIMENT. — Read Art. 42. The object of
this experiment is to first determine the specific refractivity of a
mixture of two substances and of a specimen of each component,
and then by means of (145) to compute the proportion of the com-
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ponents in the mixture. This method for determining composition
can be employed only when there is a considerable difference be-
tween the specific refractivities of the components. For the fol-
lowing pairs of liquids the method is available: acetone and toluene,
acetone and carbolic acid, acetic acid and benzene, ethyl alcohol
and benzene, ethyl alcohol and carbolic acid. The method is also
available for certain soluble salts in solution, for example, potas-
sium chloride in water.

ManrtpurLaTION. — Make a mixture, or solution, of the two sub-
stances, by weight, in known proportion. Find the density, and
also the refractive index, of a sample of each ingredient and of the
mixture, at room temperature. For finding the densities, the
pyknometer shown in Fig. 24 is well suited. For finding the re-
fractive indices, any of the refractometers described in Arts. 43—
49 can be employed.

From these data compute the Lorenz specific refractivity of
each component and of the mixture. Using these values,.compute
the proportion of the constituents by (145). Compare this com-
puted value of the composition with the known composition.

Exp. 41. Study of Spectra

THEORY OF THE EXPERIMENT. — Read Arts. 52-54. The fact
that the bright line spectrum of any element is different from
that of all other elements, together with the fact that the spectrum
of a mixture consists in the spectra of the components, is the basis
of an important method of qualitative chemical analysis. A con-
tinuous spectrum means that the incandescent substance is either
a solid or a liquid. An absorption spectrum implies an incan-
descent solid or liquid together with a layer of cooler absorptive
material which may be solid, liquid, or gas. The object of this
experiment is to produce and study examples of bright line, con-
tinuous, and absorption spectra.

Different means must be employed to vaporize different classes
of substances. The alkaline earths are readily transformed into
incandescent vapor by the heat of a Bunsen burner. Gases are
easily rendered incandescent by a current of electricity. Some



STUDY OF SPECTRA 213

metals require the heat of an electric arc, while others are more
readily vaporized by means of an electric spark discharge. In
this experiment are to be examined, (a) the spectra of two or more
alkaline earths, (b) the spectrum of an incandescent permanent
gas, (c) the continuous spectrum from burning illuminating gas,
(d) the absorption spectrum of a colored glass or solution.
MANIPULATION. — A convenient arrangement of apparatus for
this experiment is illustrated in Fig. 134. On a board are mounted
a direct vision spectroscope with an incandescent lamp ! for illumi-
nating the comparison scale, together with a device V for holding a

Fia. 134.

gas tube and an induction coil to render the gas luminous, as well
as a Bunsen burner B for vaporizing the specimens shown in the
bottles. By turning the knob K a specimen A whose spectrum is
to be studied may be brought into the Bunsen flame or into the
proper specimen bottle without moving the eye from the ocular of
-the spectroscope.

Light the gas, close the air vent to the Bunsen burner and ob-
serve the spectrum.

Turn on the current in the lamp that illumines the comparison
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scale. Place before the slit a piece of colored glass and observe
the spectrum. Note the scale divisions at the boundaries of the
dark bands. Do the same with a vial of cobalt chloride solution
acidulated with hydrochloric acid.

Wave Lengths in ten millionths of a Centimeter
600 500

L)
890 690 670 660 650

Absorption Spectrum of Cobalt Bromide.
F1a. 135.

Wave Lengths in ten milltonths of a Centimeter

Absorption Spectrum of Nickel Chloride.
Fia. 136.

Wave Lengths in ten millionths of a Centimeter

Spark Spectrum of Sodium.
Fra. 137.

Wave Lengths in ten millionths of a %tmeur
6Q0

Inte

Spark Spectrum of Gold.
Fia. 138.

Open the air vent until the gas burns with a blue flame. Clamp
the wire contained in the NaCl bottle into the free end of the rotat-
ing arm that is operated by the knob K. Twist the knob till the
asbestos string on the end of the specimen wire is brought into the
flame. Observe the spectrum. Focalize the spectroscope till
the bright sodium line is sharp. With an instrument of greater



CALIBRATION OF A PRISM SPECTROSCOPE 215

resolving power the sodium line would be double. Note the scale
position of the line. Remove the specimen wire and replace it in
the proper bottle.

In the same manner examine the spectrum of each of the other
solutions furnished, and note the scale positions of all lines. Be
careful that each specimen wire is replaced in the proper bottle.

Now turn the totally reflecting prism into place in front of the
slit, and turn off the gas. Connect the primary of the induction
coil, I, to a proper source of current, and the secondary to the termi-
nals of the device V, that contains the tube of gas to be studied.
Note the scale position of each spectral line.

Make a map similar to Figs. 135-138 of the spectrum of each
substance studied. In the case of a bright line spectrum, the posi-
tions of the lines in the map correspond to either the positions of
the spectral lines on the scale of the instrument, or to the wave-
lengths of the spectral lines. The length of a line in the map indi-
cates the relative brightness of the spectral line which it represents.
In the case of an absorption spectrum, the ordinates of the ab-
sorption curve represent the relative brightness of the spectrum
at various wave-lengths. '

Exp. 42. Calibration of a Prism Spectroscope by Spectral Lines
of known Wave-Lengths

THEORY OF THE EXPERIMENT. — Read Art. 53. Spectroscopes
in which the prism and lenses are fixed with reference to one
another are usually provided with a device by means of which a
bright image of a linear scale is formed in the focal plane of the
eyepiece. . The positions of spectral lines can be thereby indicated
in terms of this arbitrary scale. In the case of spectroscopes in
which the prism and telescope can be rotated, the position of
spectral lineg can be described in terms of the angular position of
the telescope relative to the collimator when the prism is in the
position of minimum deviation for light of a given wave-length.

Instead of specifying a spectral line in terms of the constants of
a particular instrument, it is usually preferable to specify it by its
wave-length. By noting the position, relative to the spectroscope
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scale, of several spectral lines of known wave-lengths, a curve can
be constructed that shows the relation between wave-lengths and
scale divisions.

Spectral lines of known wave-lengths can be obtained from
rarefied gases rendered luminous by an induction coil, or from
chlorides of the alkaline metals and earths vaporized in the flame
of a Bunsen burner. For purposes of calibration it will be found
convenient to use the vacuum tube spectrum of helium, and the
flame spectra obtained from the chlorides of the alkaline metals
and earths. The principal visible lines of these substances have
the following wave-lengths, expressed in Angstrém units.*

Helium — 4472, 4713, 4922, 5016, 5876, 6678;
Barium — 5536;

Cadmium — 4678, 4800, 5086;

Calcium — 5817, 5934, 6266;

Lithium — 6104, 6708;

Potasstum — 4044, 7665, 7699;

Strontium — 6351, 6599, 6730;

Sodium — 5893;

Thalium — 5350.

MANIPULATION. — In case the instrument is with fixed parts,
place a lamp in front of the side tube containing the glass scale,
and a sodium flame in front of the slit. Focalize the eyepiece so
that the image of the scale and the sodium line do not move relative
to one another when the eye is moved from one side to the other
in front of the eyepiece.

In case the instrument is one with a divided circular table and a
movable prism and telescope, make the adjustments detailed in
Exp. 38.

If a helium tube be available, place it in front of the slit and take
scale readings of the various lines. With the instrument having
all the parts fixed, the positions of the various lines are read di-
rectly from the eyepiece scale. In the case of the instrument with
movable telescope, rotate the telescope till the intersection of the

* The Angstrom unit is 10~ meters = 0.0000001 millimeter = 0.0001
micron = 0.1 uu.
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cross hairs is on the middle of a spectral line, and read the position
of the telescope on the circular table. Do the same with the other
spectral lines.

If a helium tube is not available, one can employ concentrated
solutions of some of the alkaline metals or earths, acidulated with
hydrochloric acid. The solutions can be conveniently introduced
into the Bunsen flame by means of a wick of asbestos in the manner
illustrated in Fig. 134.

Plot a curve coérdinating scale readings and wave-lengths. This
is the calibration curve required.

Exp. 43. Construction of a Simple Plane Grating Spectrometer
and the Determination of Wave-Lengths of Light

THEORY OF THE EXPERIMENT. — Read Arts. 50 and 53. In
this experiment a transmission spectroscope is to be built up from
a grating, lenses, and rods, and by means of it are to be determined
the wave-lengths of light emitted by a given incandescent vapor.
The essential parts of a simple transmission grating spectroscope

e Q

Fia. 139.

are a slit S, Figs. 139 and 140, a lens L, for rendering the light from.
the slit parallel, the grating G, a lens Ly, for focalizing the light from
the grating, a pair of cross hairs D in the focal plane of the objec-
tive L, an eyepiece L3 for magnifying the images of the slit, and a
divided circular scale for measuring deviations. The slit and lens
L, constitute a system called a collimator. The objective L, eye-
piece L3, and cross hairs D in the image plane constitute a tele-



218 OPTICS

scope. Attached to the telescope is a pointer so that the position
of the telescope can be read on the divided circle.

ManipuLAaTION. — Set up the collimator by mounting on one
of the horizontal rods the lens L,, the slit S, and the light source.
The distance between the lens and slit should be such that the
light on emerging from the lens shall be parallel. To make this

Fic. 140.

adjustment, light the lamp; and by means of a small hand mirror
reflect the light emerging from the lens back through the same
lens, and observe the image of the slit formed beside the slit. Ad-
just the position of the lens till this image of the slit is well defined.
The slit is now at the principal focus of the lens, a.nd light emerging
from the lens is parallel.

Place the collimator so that its optic axis intersects the axis of
the divided circle at right angles. On the other horizontal rod,
and in line with the collimator, mount the lenses and cross hairs
constituting the telescope, and adjust till the image of the slit is
sharply defined in the plane of the cross hairs.

Place the grating at the center of the divided circle with the
ruled surface in the plane of the axis of the divided circle and the
rulings parallel to this axis. The slit should also be parallel to this
axis. The adjustment of the plane of a transmission grating nor-
mal to the direction of the incident light can be tested as follows:
With a sodium flame in front of the slit, read the positions of the
pointer when the cross hairs coincide (a) with the central image;
(b) with the first order image to the right; (c) with the first order
image to the left. If the grating be normal to the incident light,
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then the angle between the central image and the first order image
to the right will equal the angle between the central image and
the first order image to the left.

After the instrument is in adjustment, measure the deviation
of the sodium lines from the central image and by means of (152)
compute their wave-lengths.

Exp. 44. Determination of Wave-Lengths of Light by Means
of a Steinheil Spectrograph

TaEORY OF THE EXPERIMENT. — Read Art. 50. The Steinheil
spectograph is designed for the convenient application of (153).
Light from the fixed collimator C, Fig. 141, after being totally
reflected by the fixed prism P, and being diffracted by the plane
grating A B, enters the fixed
telescope T. The grating is
capable of rotation. The B
angle through which the ‘
grating is rotated is indi-
cated by an alidade (z.e.,
pointer) and circular scale.

uation (153) may be
wn?é%en (153) may W
A= %sin w, (184)

A

where k represents the con- Fra. 141

stant quantity 2 b cosg and w represents 3 ¢. The value of the

constant k is marked by the maker on the instrument. It can be
readily determined from a setting on a spectrum line of known
wave-length.

The instrument is provided with a camera which can be sub-
stituted for the telescope. It is for this reason that the instrument
is called a spectrograph.

MANIPULATION. — Turn the grating till the reflected image of
the illuminated slit is on the cross hairs of the telescope and note
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the scale reading. Then turn the grating till the desired spectral
line is on the cross hairs and note the scale reading. The angle
between these two readings is the value of w in (184).

In the same manner find the wave-lengths of all the lines of the
spectrum under investigation.

Exp. 46. Determination of Wave-Lengths of Light by Means
of a Concave Grating

TueorYy oF THE ExXPERIMENT. — Read Arts. 51 and 53. In
Art. 51 it has been shown that with an illuminated slit, concave
grating and image of the slit on the circumference of a circle
having as a diameter the radius of curvature of the grating,
wave-lengths of the light illuminating the slit can be readily de-
termined. And that if, in addition, the position of the slit on
the circle be such that the grating and the image of the slit are
at the ends of the diameter of this circle, the wave-length of the
light of a spectrum line at the center of curvature of the grating
is, (155),

_ bsinz , (185)

n »

A

where 7 is the order of the spectrum, b is the distance between
two consecutive grating lines, and 7 is the angle at the grating
between lines from the slit and from the image of the slit.

This arrangement is very conveniently realized in the Rowland
mounting. Since the grating and the image are at the ends of
a diameter of the circle, the triangle CSY, Fig. 88, must at all
times be right-angled at the slit. In Rowland’s mounting there
are two horizontal rails at right angles to one another, on each of
which is a two-wheeled truck. These trucks are pivoted to the
ends of a rigid rod which has a length equal to the radius of curva-
ture of the grating. The pins connecting the trucks to the ends
of the rod are directly above the centers of the tracks. The fixed

“slit S, Fig. 142, is mounted at .the intersection of the rails. At
one end of the movable rod is mounted the grating G, and at the
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other end is mounted a photographic plate or ground glass C for
the reception of the spectrum.
The circle passing through C, S, and G moves in space as the

Fia. 142.
rod CG is moved. As the rod of length r is moved, the other sides
of the right-angled triangle vary in length. In Fig. 143,

. l
sint =

7 (a constant)
From (185),
Bin 'i = —b——xc_——-
(ﬁ) (a constant)

Therefore, for a spectrum of a given
order, loo),.. Consequently the rail
that supports the camera can be uni-
formly divided so as to indicate wave-lengths directly. By
bending the photographic plate into an arc of a circle having
for a diameter the radius of curvature of the grating surface,
all parts of the spectrum on the
5 T] I plate will be in focus at the same
_IV : time.
Fia. 144. It is common practice to photo-
graph on the same plate with the
spectrum under investigation a comparison spectrum whose lines -
are of known wave-lengths. The spectrum of the sun is usually
employed for this purpose. A convenient device for arranging
two spectra side by side on the same plate consists in a shutter
having a long narrow opening, Fig. 144, placed near the photo-
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graphic plate and toward the grating. The thickness of the
shutter equals the width of the opening. When the plane of
the shutter is vertical, as in the figure, the part of the photographic
plate behind the aperture is exposed to the spectrum of the source
in front of the slit. On turning the plane of the shutter into the
horizontal position, the part of the plate just exposed is now
shielded, and a strip on either side is exposed to the spectrum of
the source now in front of the slit.

Since the wave-lengths of the solar spectral lines have been
carefully determined and tabulated, and since with the Rowland
mounting the difference between the wave-lengths of two lines is
proportional to the linear distance between them, the wave-length
of any line of the spectrum under investigation can be quickly
determined in terms of known lines of the comparison spectrum.

The objects of this experiment are to test the adjustments of a
Rowland concave grating mount, and to photograph a bright line
spectrum and also a comparison spectrum on the same photographic
plate.

ManrtruLATION. — Before using the apparatus for determining
wave-lengths, the following adjustments should be verified.

(a) Perpendicularity of the Tracks. — Hang plumb bobs over
the centers of the tracks near the ends L and M, Fig. 143, and also
over the centers at convenient points P and Q. The point of
intersection of the centers of the two tracks can now be located
by placing a fifth plumb bob at such a point S that it is at the
same time in line with PL and with QM.

From the point of intersection lay off along the center of each
track by means of a steel tape any convenient distance. Measure
the hypotenuse length from the end points of these distances.
If the tracks are perpendicular to one another, the square of the
hypotenuse equals the sum of the squares of the other two
distances.

(b) Horizontality of the Tracks. — Test with a spirit level.

(c) Position of the Slit. — Place the slit in line with the plumb
bob which indicates the point of intersection of the tracks.

(d) Position of the Grating. — By sighting along the plumb
bobs SGM see that the center of the reflecting surface of the
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grating is over the center of the track. To adjust the grating
face perpendicular to the rod GC, darken the room, stand a
candle near C, and move the head to the right and left, up and
down, till the image is found. This should coincide in position
with the candle. If it does not, let another observer adjust the
screws holding the grating in its mounting till the grating is
pointing in about the proper direction. The final adjustment of
the grating is made by setting the candle behind a vertical slit
cut in cardboard placed at C, and tilting the grating till the slit
and its image coincide.

. (e) The Distance between the G'ratmg and the Camera. — If this
distance equals the radius of curvature of the grating surface, a
spectrum of a source illuminating the slit S will be in focus over
the entire length of a photographic plate at C bent onto an arc of
the circle SCG. If the spectrum is not sharp over the entire
plate, the distance between the camera and grating must be

adjusted till it is.

(f) Verticality of the Grating Rulings. —Test and, if necessary,
adjust by reference to a plumb bob hung close to the reflecting
surface of the grating.

(9) Position of the Source.— The gra,tmg must be fully and
evenly illumined by a beam of light parallel to the track which
supports the grating. The slit is illumined by an image of the
source produced by the aid of a lens. Darken the room and
adjust the position of the source or lens till the shadow of the grat-
ing is in the center of the circle of light, and the line joining the
center of the slit and the center of the shadow of the grating is
parallel to the track.

Place in front of the slit a glass tube containing some known
pure gas under diminished pressure. Render the gas brightly
luminous by means of a small induction coil. Before introducing
a photographic plate into the camera, observe the ground glass
while the camera is moved away from the slit and note, (a) that
spectra of the first, second, third, etc., orders sweep in succes-
sion over the ground glass; (b) that the spectrum of the first
order is distinet, but that in the case of higher orders, the red end
of one spectrum overlaps the blue of the next higher order; (c)
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that the blue end of any spectrum passes across the ground glass
before the red end. With the camera stationary at any position,
note, (a) that the red end of any spectrum is nearer the slit than
is the blue end; (b) that a spectrum of higher order is nearer
the slit than one of lower order. Show that these facts can be
inferred from the equations of Art. 51.

To vaporize a metal or other refractory substance, a direct
current arc is usually employed. The two carbons should be
vertical and the positive one below. A small piece of the speci-
men is placed in a shallow cavity in the end of the lower carbon.
The length of the arc should be so great that when the image is
projected on the slit, the images of the hot carbons can be inter-
cepted without preventing the passage through the slit of the
light due to the vaporized specimen.

Using the shutter, Fig. 144, expose the middle of the photo-
graphic plate to the spectrum of the specimen, and then expose
the portions on either side to the comparison spectrum. The
duration of exposure depends so much upon the brightness of
the source and the part of the spectrum being photographed, that
experience can be the only guide. For the same plate and region
of the spectrum, the solar spectrum may require one-half second,
while the iron arc spectrum may require thirty seconds and the
iron spark spectrum twenty minutes.

The spectrum of helium or other gas is convenient for compari-
son, though the time of exposure will be long. After one has had
some experience, the arc spectrum of iron or the solar spectrum
can be used. These have so many lines, however, that consider-
able experience is necessary to identify them.

Knowing, from tables or maps, the wave-lengths of lines of the
comparison spectrum, the wave-lengths of the lines of the other
spectrum can be obtained by measuring the linear distances be-
tween the various lines on the developed photographic plate.
These distances are measured by means of a microscope that can
be moved by means of a long micrometer screw from one end of
the negative to the other.
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Exp. 46. Determination of the Concentration of a Solution by
Means of a Martens-Koenig Spectrophotometer

THEORY OF THE EXPERIMENT. — Read Arts. 55, 56, and 59.
With the Nicols prism of the spectrophotometer in such a posi-
tion that one-half of the field of view is dark, suppose absorption
cells of thickness 7, and 7, filled with a specimen of the solvent
used in the solution under test to be placed in front of the slits
a and b. Suppose that to make the two halves of the field of
view equally bright the Nicol must be rotated through an angle 6.
Then, the ratio of the illuminations of the slits by light of a given
frequency is, (164),

Tf = tan?0. (186)
Substituting the solution under test for the pure solvent, let 6
be the angle through which the Nicol must be rotated in order to
produce a uniform field. Representing the illuminations of the
slits @ and b when the incident light has traversed the solution by
1.’ and I/, respectively, we have
I ’
7= tan2@’. (187)
b
From (158) we have
I, =1,(10)"E» and I,/ = I, (10)"Em,

where 10 is the base of the ordinary logarithms and E represents
the extinction coefficient of the solution.

Dividing each member of (186) by the corresponding member
of (187), and substituting in the resulting equa.tlon the above
values of I,” and I;’, we find

M = E (ny—ny)
tanz 0! - (10) ’
or 2logtan — 2logtan 6’ = E (n; — n),

whence,
2 (log tan 6 — log tan 6’)
n, — n,

E = (188)
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Graphical Method. — Knowing the concentration and the ex-
tinction coefficient of one solution together with the extinction
coefficient of the same solution of unknown concentration, the
concentration of the latter can be computed by means of (159).
However, when many determinations of concentration of the
same solution are to be made the following graphical method is
much more expeditious.

Since 6 refers to the pure solvent, log tan @ is a constant. The
quantity (n, — n) is also constant. E and log tan 6’ are variables.
We thus see that the above equation represents a straight line
coordinating E and log tan ¢’.

Since the extinction coefficient varies directly with the concen-
tration of a solution so long as there is no chemical or physical
change, it follows from the above that the curve coérdinating
concentration and log tan 6’ is also a straight line. Thus the
concentration of a solution of an unhydrolyzed and completely
ionized solute can be determined spectrophotometrically. If, how-
ever, the solute is partly ionized or partly hydrolyzed, the method
is unavailable. The method is applicable whenever the curve
coordinating known concentrations and observed values of log
tan 6’ is a straight line. The concentrations corresponding to
the ends of the straight portion of this curve are the limits within
which the method can be used.

From the straight portion of the curve coérdinating concentra-
tion and log tan 6’ another curve can be constructed coordinating
concentration and 6’ within the determined limits of concentra-
tion. When this last curve has been once made for a solution of
any given solute in a given solvent, the unknown concentration
of any specimen of the same solution can be quickly determined
if this concentration is within the prescribed limits.

The particular part of the spectrum at which settings should be
made depends upon two factors. If, when the two halves of the
field of view are in balance, 6’ is about 45°, a given error in reading
¢’ will cause a smaller error in the calculated value of E than if 6’
were small. For example, an error in ¢’ of 0°1 introduces in
log tan ¢’, and consequently in the concentration, an error twice
as great when 6’ is 15° as when 6’ is 45° On the other hand, at



THE CONCENTRATION OF A SOLUTION 227

small angles, it is possible to make more accurate judgments of
equality of brightness than at angles near 45°. Between these
" opposing limitations to precision, it is best to compromise by ar-
ranging that the balance will occur at angles between 25° and 40°.
Again, the absorption at one part of the spectrum may be altered
much more by a given change of concentration of the solution
than will the absorption at a different part of the spectrum.
This alteration in the ratio of the change of absorption to concen-
tration can be determined only by observations at various parts
of the spectrum. For example, in the case of two different con-
centrations of a given solution, the values of ¢’ differed by 3°
when settings were made in the red portion of the spectrum, and
15° when settings were made in the green. Obviously, a given
error in ¢’ in the first case would introduce a far greater change
in the calculated concentration than the same error in the second
case. In brief, that part of the absorption spectrum should be
selected in which the ratio of change of absorption to concentra-
tion is the greatest possible consistent with the requirement that
¢ shall be between 25° and 40°. For specimens of the same
solution differing widely in concentration, the part of the spec-
trum at which most sensitive readings can be made will not be
the saine.

- The object of the present experiment is to construct the curve
cobrdinating concentrations of a’ given solution and the corre-
sponding instrumental readings ¢’.
, Man1puLATION. — The manipulation of this experiment may
be divided into the following three steps: (a) The determina~
tion of the portion of the spectrum best suited
for work with the particular solution being
studied; (b) determination of the limits of
concentration between which the method is
available; (c) construction of the required
curve coordinating concentrations and instru-
mental readings.

‘Two layers of a solution of the same concentration and different

thickness are conveniently obtained by the use of the Schulz
absorption cell, Fig. 145, consisting of a cell 11 mm. thick in which

Fia. 145.
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is a glass block 10 mm. thick, so arranged that one pencil of
light after traversing 11 mm. of solution enters the slit a, Fig. 146,
while another pencil after traversing 1 mm. of solution and the
“Schulz body’” S, enters the slit b. Thus, the difference of
thickness of solution traversed by the two pencils is one centimeter.
The two pencils of light of equal intensity are produced by a
- s— triple lens Y. The aperture in

L|<:® 2" the diaphragm X is covered with
1'( Y 1 Tie_ ground glass.

Using a suitable known concen-
tration of the given solution in
the Schulz absorption cell, determine the value of 6 with the
observing tube T, Fig. 96, at six or eight different elevations.
Note the readings on the micrometer screw M. From the data
thus obtained, plot an absorption curve with micrometer scale
readings as absciss® and tan?# as ordinates. This curve shows
the variation of absorption in different parts of the spectrum.
And inasmuch as that portion of the spectrum in which a given
change of wave-length produces the greatest change in absorption
is also the portion of the spectrum in which a given change of
concentration produces the greatest change in absorption, this is
the part of the spectrum to be used in the subsequent work on
this solution.

Make up a series of solutions of the given substance of known
concentrations. These may be expressed in pef cent concentra-
tion, or in per cent normal concentration. With the observing
tube fixed at the elevation just found, find the value of ¢’ corre-
sponding to each concentration. With these data plot a curve
codadinatmg concentration and logtan . Note the limits of
concentration within which the spectrophotometric method can be
used. A

Select three or four convenient points on the straight portion
of the curve just plotted, compute the corresponding values of ¢,
and plot a curve codrdinating 6’ and concentration. This is the
required standard spectrophotometric curve of the given solu-
tion. By its aid, an unknown concentration of the same solution
can be determined from a single reading of the instrument.

Fic. 146.
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Exp. 47. Determination of the Concentration of a Solution by
Means of a Dubosc Colorimeter

THEORY OF THE EXPERIMENT. — Read Art. 60. The object of
this experiment is to make up a series of solutions having known
concentrations of the same substance, to determine their rela-
tive concentrations by means of the Dubosc colorimeter, and to
compare these calculated values with the known values.

MantpuraTION. — Copper sulphate is a convenient substance
for this experiment. It should be remembered that if copper
sulphate crystals be exposed to dry air the surface layer will lose
part of the water of crystallization. In order that each molecule
of copper sulphate may possess the full five molecules of water, it
is best to recrystallize the salt and dry it between filter paper.
For the purpose of this experiment, however, it will be sufficient
to break up the large crystals of commercial copper sulphate and
select for use the fragments from the interior of the crystals.

Make up 200 cc. of a molar solution of copper sulphate. Re-
serving enough of this solution to half fill one tube of the colorim-
eter, make up from the remainder a % molar, a & molar, a 1% molar,
and an % molar solution. For diluting the molar solution to the
required concentrations, use a 10-cc. pipette and a 100-cc. flask.

The scales beside the specimen tubes of colorimeters are usu-
ally divided into 100 equal spaces. If the instrument being used
is divided in this manner, pour into the left-hand specimen tube
T, Fig. 101, sufficient of the molar solution to come somewhat
above the 10-division mark and lower the glass rod or closed
tube 7" till the attached index points to the 10-division mark.
This adjustment need not be altered throughout the experiment.

Pour into the right-hand specimen tube one of the other solu-
tions and adjust the thickness of the layer till the two halves of
the field of view in the eyepiece are equally bright. Note the
thickness of the layer.

Do the same for each of the other solutions.

Compute the concentration of each solution relative to the
molar solution. Compare the results of the experiment with the
known concentrations.
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Exp. 48. A Spectrophotometric Comparison of Two Light Sources

THEORY OoF THE EXPERIMENT. — Read Arts. 57 and 58.

In this experiment the ratio of the luminous intensities, at
various wave-lengths, of a metal filament incandescent lamp and a
carbon filament lamp are to be obtained by means of a Lemon-
Brace spectrophotometer, and the results plotted in a curve.

MANIPULATION. — After putting the instrument into adjust-
ment, calibrate it as described in Exp. 42. Place one of the light
sources in front of one of the collimator slits, and the other source
in front of the other slit. Rotate the telescope into a position in
which the field of view is filled by light from one end of the spec-
trum. Note the angular position of the telescope. Rotate one
Nicol prism till the two parts of the field of view are equally
bright and note the angle between the planes of polarization of
the two Nicols. Take a series of similar observations at five-
degree intervals throughout the range of the visible spectrum.

Observe whether the part of the field of view due to light that
has traversed the two Nicol prisms is maximum or minimum when
the Nicols are set at zero. If the former, compute the relative in-
tensities of the two sources by (160). If the latter, compute the
relative intensities by (161). For the computation of relative in-
tensities use Table 13.

Plot a curve having wave-lengths as absciss® and relative in-
tensities as ordinates.

Throughout the experiment the electric currents through the
lamps must be constant. This constancy is most easily attained
by operating the lamps by a storage battery.

Exp. 49. Determination of the Absorption of Light of Different
Wave-Lengths produced by a Given Substance _

THEORY OF THE EXPERIMENT. — Read Arts. 57.and 58. The
object of this experiment is to determine the fraction of the light
of different wave-lengths incident upon a given specimen that is
transmitted by it.

Man1PuLATION. — Read Exp. 48. Place a ctorage battery
operated incandescent lamp in front of one of the collimator slits
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of a Lemon-Brace spectrophotometer. Arrange a mirror so that
light from the same source traverses the other collimator. Place
the specimen under investigation in front of the latter collimator
slit, and make a series of observations as in the previous
experiment. ’

Plot a curve having as absciss®, wave-lengths; and as ordi-
nates, the ratios of the light transmitted by, to the light incident
on, the specimen.

Exp. 60. Determination of the Amount of Sucrose in a Sample
of Sugar by Means of a Polarimeter

THEORY OF THE EXPERIMENT. — Read Arts. 61-68.

MANIPULATION. — A sodium flame is to be placed at such a
point X, Fig. 103, that the image is formed in the plane of the
diaphragm D,. .This is readily effected by fastening a needle to
the lamp, just in front of the flame, and then moving the lamp
back and forth till an image of the needle is formed on a white
card held in front of the diaphragm D,.

Fill the 2-decimeter specimen tube with distilled water and place
it in the polarimeter. Rotate the analyzer till the position is
found at which the entire field of view is uniformly bright. Note
the scaie reading. This is the zero setting of the apparatus.

Weigh out from 10 to 20 gm. of the specimen and place it in a
graduated 100-cc. flask about half filled with distilled water. If
the solution is clear and colorless, dilute it to the 100-cc. mark.
But if the solution is not clear and colorless it must first be clari-
fied as in Art. 68, and then diluted to the 100-cc. mark.

Empty the 2-decimeter solution tube, rinse it with some of the
sugar solution, and then fill with the solution. Place the speci-
men tube in the polarimeter and note the temperature and the
scale reading when the entire field of view is uniformly bright.

Take another flask graduated to both 50 cc. and 55 cc. and fill
with the sugar solution to the 50-cc. mark. Add concentrated
hydrochloric acid until the 55-cc. mark is reached. A small
pipette is convenient in making these fine adjustments of volume.
Pour the acidulated solution into a larger flask in a water bath
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so arranged that the temperature of the solution is maintained
at between 70° C. and 80° C., for 10 minutes. At the end of this
time, the sucrose in the solution is completely inverted. After
the solution has cooled to room temperature, use a part of it to
rinse out the 2.2-decimeter specimen tube. Then fill this tube
with the invert sugar solution, place it in the polarimeter and note
the t.empera,ture and the scale rea.dmg when the entire field of
view is uniformly bright.

The data are now at hand for computing the amount of sucrose
in the solution by means of (169). If a noninvertable sugar be
present, its amount can afterward be computed by means of
(170).

The following example will illustrate the method of computation.

Data. — Mass of sample of granulated sugar, 10.01 gm.

Zero point of polarimeter, i.e., reading with specimen tube filled with dis-
tilled water, 6°.25.

Reading with 2-decimeter tube filled with solution of 10.01 gm. sugar in
sufficient water to make 100 cc. of solution, 19°.55.

Reading with 2.2-decimeter tube filled with solution after inversion, 1°.85.

Temperature 22° C.

Computation. — From the above data,

6 = 19°.55 — 6°.25 = 13°.30.
— (6°.25 — 1°.85) = —4°.40.

The values of the specific rotations of sucrose and invert sugar are given in
Art. 61. Since ordinary granulated sugar is so nearly pure sucrose, we will
introduce a negligible error in assuming that the concentration of sucrose in
the specimen tube was 10 gm. per 100 cc. of solution, and that the concentra-
tion of invert sugar was 10 (1.05) gm. per 100 cc. of solution. Substituting
these numbers in the values of the specific rotations of sucrose and invert
sugar, Art. 61, we have for sucrose

[a1]¢ = 66.51 + 0.0045 (10) — 0.0144 (22 — 20) = 66°.53

and for invert sugar
[as)e = — 19.8 — 0.036 (10 X 1.05) + 0.304 (22 — 20) = — 19°.57.

Substituting these values in (169), we obtain
_ 13.30 + 4.40
1 = 27(66.53 + 1.158 X 19.57) 0.01
= 9.92 gm. sucrose in 100 cc. of solution.(
And as the solution contained 10.01 gm. of the sample, the sample contained
99.1 per cent of sucrose,
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TABLE 1.—CONVERSION FACTORS

LENGTH
1 centimeter = 0.39371 inch linch = 2.53995 cm.
1 meter = 3.2809 feet 1 foot = 0.30479 m.
1 kilometer = 0.62138 mile 1 mile = 1.60931 Km,
1 micron = 0.001 mm. 1mil = 0.001 inch
= 0.0000394 inch = 0.00254 cm.
AREA
18q.cm. = 0.15501 sq. in. 1 8q. in. = 6.4514 sq. cm.
1sq. m. = 10.764 sq. ft. 1 sq. ft. = 0.092900 sq. m.
VoLuoms
1 cu. cm. = 0.061027 cu. in. 1 cu. in. = 16.386 cu. cm.
1 cu. m. = 35.317 cu. ft. 1 cu. ft. = 0.028315 cu. m.
1 liter = 1.76077 pints 1 quart = 1.13586 liters
Mass
1 gram = 15.43235 grains 1 grain = 0.064799 gram
= 5 carats (diamond) 1 dram (Adv.) = 1.772 grams
1 kilogram = 2.20462 Ib. 1 1b. (7000 grs.) = 0.45359 Kg.
ANGLE
1 radian = 57.296 degrees | 1 degree = 0.017453 radian
DENsITY
1 g. per cc. l 1 Ib. per cu. ft.
= 62.425 1b. per cu. ft. = 0.016019 g. per cc.
Force

1dyne = 0.000072331 poundal I 1 poundal = 13825 dynes
1 g. wt. = 0.0022046 1b. wt. 11b. wt. = 453.59 g. wt.

MoMENT oF INERTIA

1 em. g. unit 1 ft. 1b. unit
= 2.3731 X 10-¢ ft. 1b. units = 421390 cm. g. units
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STrESS

1 dyne per sq. cm. 1 poundal per sq. ft.

= 0.067197 poundal per sq. ft. = 14.8816 dynes per sq. cm.
1 g. wt. per sq. cm. ‘ 11b. wt. per sq. ft.

= 2.0482 lb. wt. per sq. ft. = 0.48824 g. wt. per sq. cm.
1 cm. of mercury at 0° C. 1 in. of mercury at 0° C.

= 13.596 g. wt. per sq. cm. = 34.533 g. wt. per s8q. cm.

=0.19338 lb. wt. per sq. in. = 0.49117 Ib. wt. per sq. in.

Work or ENERGY
lerg = 2.3731 X 10-%ft. poundals 1 ft. poundal = 421390 ergs

1 joule = 107 ergs 1ft. b, = 13825.5 g. cm.
= 23.731 ft. poundals = 1.35485 joules
1g.cm. = 7.233 X 10— ft. Ib. 1 h.p. hour = 2685600 joules
PowEer
1 watt = 107 ergs per sec. 1 ft. poundal per see.
= 23.731 ft. poundals per sec. = 421390 ergs per sec.
= 44.23 ft. pounds per min. 1 ft. Ib. per min.
1 force de cheval = 0.13825 Kg. m. per min.
= 75 Kg. m. per sec. 1 horse power = 745.96 watts
= 0.9863 horse power = 1.0139 force de cheval

THERMOMETRIC SCALES

C=§(F-32 | F=%C+32
. UNIT QUANTITY OF HEAT
1 g. calorie = 0.0039683 B.t.u. | 1 B.t.u. = 252.00 g. calories

MEecHANICAL EQUIVALENT OF HEAT *

1 g. calorie = 4.19 joules 1 B.t.u. = 1055 joules
= 426.9 Kg. m. = 778.1 ft. Ib.
= 1400.6 ft. 1b.

LOGARITHMS
logw N = 0.43429 log, N | loge N = 2.3026 logio N

* Computed with the value of g at Greenwich.
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TABLE 2.—DENSITIES OF SOLIDS AND LIQUIDS

Since density varies with the temperature and with the specimen, these
numbers are to be regarded as approximations only.

Substance Substance Lb” Fer
NG 3 g Lime..... 133 538
Antimony....... { g.71 | gg Limestone. .. . ... . %gg %%
Asbestos......... : :

2.8 1% Marble........... §2.8 10
Asphalt.......... { : :
Beeswax......... 0.96 60 o T URrreeeeeeeeis .
Bgnzene ......... 0.70 44 Mercury at 0° C... 13.596 848.7
Bismuth......... 9.80 612 Nickel............ 8.90 556
B { 7.7 480 Oil, linseed. . ... .. 0.94 59
TASS. ovveeennns 8.7 540 0il, olive......... g.g; gz
. 1.6 100 . .
Brick............ { 21 130 Paraffin.......... { 0.93 58
Bronze.......... 8.6 540 Phosphorus. .. .... 1.83 114
CaCle........... 2.2 140 Platinum......... 21.5 1340
CS; at 20° C 1.264 78.9 Porcelain......... 2.4 150
Chalk { 1.8 110 KCrO4. ... 2.72 170
"""""" 2.8 1;5 g:Cl‘;OL......... g'g‘g i.gg
1.2 5 uartz........... .
Coal.....ovee 118 100 Besao 00 1.07 67
83 Or """"" g% ?ig Sandstone. . ...... {gg ig
F P N .
Diamond |7 83 23  Shellac........ iz B
gther at Ol° C.... (8)'(75;6 5358.9 Silver { pu_ret ...... igg (?5“‘3
erman silver. . . . ‘ mint...... .
al ; 2.5 150 Slate............. 2.7 170
BBB.. e 3.9 | Soapstone. .. ..... 2.7 170
Glycerin......... 1.26 79  Solder (soft)...... 8.9 555
Gold, pure....... 19.32 1206 NaCl............. 2.15 134
Granite i % 2.5 150 Sulphur, rhomblc - 2.07 . 129
TANIE. 130 190 Tin.............. 7.29 455
Graphite........ 2.3 140 | Turpentine....... 0.87 54
Iceat0°C....... 0.9167 57 | Vulcanite......... 1.22 76
¢ i7.0 440 Waterat4°C..... 1. .4252
cast....... 7.7 480 ash...... - 0.75 47
pure....... ;.86 i%l) ‘ Wood cherry 337 g
Iron .6 ] .
steel...... { 78 490 se&_d oak...... %‘1)(5) ‘ g%
7.7 486 sone pine...... 0. ;
wrought... 1725 400 poplar....| 0.4 25
1 ; 1.83 114 walnut 0.7 45
AR ARRREEEREEE 1.92 120  Zinc.............. 7.15 446
Lead (cast)...... 11.34 708 Z e e et 2.0 125
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TABLE 3. — SPECIFIC GRAVITY OF WATER AT DIFFERENT
TEMPERATURES

REFERRED T0 WATER AT 4° C.

°C.| Sp.egr. °C.| 8p.egr C.| Sp.gr. °C.| Sp.agr. °C.| Sp.gr.
—4 | 0.99945 || 17 | 0.99882 (| 38 | 0.99303 || 69 | 0.98382 || 80 | 0.97191
-3 58 || 18 864 || 39 268 || 60 331 || 81 129
-2 70 || 19 845 || 40 233 || 61 280 || 82 066
-1 79 || 20 825 || 41 195 || 62 228 || 88 004
0 87 || 21 804 || 42 157 || 63 175 || 84 | 0.96941
1 93 || 22 782 || 48 117 || 64 121 || 86 876
2 97 || 28 759 || 44 077 || 66 067 || 86 812
3 99 || 24 735 || 46 035 || 68 012 || 87 747
4 | 1.00000 || 26 710 || 46 | 0.98993 || 67 | 0.97957 || 88 682
5(0.99999 || 26 684 || 47 949 || 68 902 || 89 616
6 97 || 27 657 || 48 905 || 69 846 || 90 ~ 550
7 93 || 28 629 || 49 860 (| 70 790 || 91 483
8 88 || 29 600 || 60 813 (| T1 733 || 92 416
9 82 [ 30 571 || 61 767 || T2 674 || 93 348
10 74 || 81 540 || 62 721 || 18 615 || 94 280
11 64 || 32 509 (| 63 674 || T4 555 || 96 212
12 54 || 33 477 || 64 627 || 76 495 || 96 143
13 42 || 84 444 || 66 579 || 16 435 || 97 074
14 29 || 86 410 || 66 530 || T7 375 || 98 005
16 14 || 86 372 || 67 481 (| 78 314 || 99 | 0.95934
16 | 0.99899 || 87 337 || 68 432 (| 79 253 |{100
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TABLE 4. — SPECIFIC GRAVITIES OF AQUEOUS SOLUTIONS

OF ALCOHOL
P?r tz-en.t. Specific gravity at P?r cLen|t Specific gravity at
by by
weight 10° 20° 30° weight 10° 20° 30°
0 | 0.99975 | 0.99831 | 0.99579 66 | 0.91074 | 0.90275 | 0.89456
6 | 099113 | 0.98945 | 0.98680 60 | 0.89944 | 0.89129 | 0.88304
10 | 0 98409 | 0.98195 | 0.97892 656 | 0.88790 | 0.87961 | 0.87125
16 | 0.97816 | 0.97527 | 0.97142 70 | 0.87613 | 0.86781 | 0.85925
20 | 0.97263 | 0.96877 | 0.96413 || . 76 | 0.86427 | 0.85580 | 0.84719
26 | 0.96672 | 0.96185 | 0.95628 80 | 0.85215 | 0.84366 | 0.83483
80 | 0.95998 | 0.95403 | 0.94751 856 | 0.83967 | 0.83115 | 0.82232
86 | 0.95174 | 0.94514 | 0.93813 90 | 0.82665 | 0.81801 | 0.80918
40 | 0.94255 | 0.93511 | 0.92787 95 | 0.81291 | 0.80433 | 0.79553
46 | 0.93254 | 0.92493 | 0.91710 100 | 0.79788 | 0.78945 | 0.78096
50 | 0.95182 | 0.91400 | 0.90577

TABLE 5. — SPECIFIC GRAVITIES OF AQUEOUS SOLUTIONS

AT 15°C.
REFERRED TO WATER AT 4° C.

Fer | HCI | HNO, | H80, | NaOH | NaCl | CusO, | ZnsO, |Sugarat Der.
-0 0.9991/ 0.999 | 0.9991| 0.999 | 0.999| 0.999 | 0.999 | 0.9987 0

[ 1 1.0242] 1.029 | 1.0334| 1.056 | 1 035/ 1.050 | 1.052 | 1.0184 b
10 1.0490| 1.058 | 1.0687| 1.111 | 1.072] 1.103 | 1.108 | 1.0388| 10
16 1.0744| 1.089 | 1.1048| 1.166 | 1.110| 1.161 | 1.168 | 1.0600| 16
20 1.1001| 1.121 | 1.1430| 1.222 | 1.150] 1.225 | 1.236 | 1.0819] 20
26 1.1262| 1.154 | 1.1816{ 1.277 | 1.191| ..... 1.307 | 1.1047| 26
30 1.1524] 1.187 |1 223 | 1.133 | .... | ..... 1.382 | 1.1282| 80
36 1.1775/ 1.220 | 1.264 | 1.387 | .... | ..... | ..... 1.1526| 85°
40 1.2007| 1.253 | 1.307 | 1.442 | .... | ..... | ..... 1.1780| 40
45 | ..... 1.287 | 1.352 [ 1.496 | .... | ..... | ..... 1.2041| 46
60 | ..... 1.320 | 1.399 | 1.548 | .... | ..... | ..... 1.2313( 650
66 |1 1.350 [ 1.449 ) ..... | . .. | ... ... 1.2593( 66
60 | ..... 1.377 | 1.503 | ..... | ... | .| ounnn 1.2883( 60
66 | ..... 1402 | 1.559 | ... | vevo | eeeea | oot 1.3183| 66
0 |..... 1424 {1616 ..... | .... | ceooc | ounnn 1.3494( 70
™ |..... 1.443 (1675 ..... | .... | ..... | ..... 1.3813| 76
80 | ..... 1.461 | 1.733 | ....o | vove | vveei | e eeeen 80
8 |..... 1479 | 178 | ... | oo | vevei ] vieie ] eennn 86
90 |..... 1.497 | 1819 oooo | ovo | veiei | eeeae ] eenes 90
9% |..... 1.514 | 1.839 | ..... | ... | eevei | ceeii ] e 96
100 | ..... 153 |1.838 | ...o. | oonn | ceei ] oennn 100
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TABLE 6. — REDUCTION OF ARBITRARY HYDROMETER

SCALES

Heavy liquids

Twaddell

W28BESRBERRRRELS

vl vl ped ped ped e ] ] |y oy e ey

Beck

BERBIERRABIEIEE

Slllllllllllllll

Baumé t

“885ZERRNREE3RR]

glllllllllllllll

Baumsé *

BBEIBRRERIGEERS

Slllllllllllllll

Scale

CLIRKRABRSII338R

Light liquids

Cartier

Beck

. — DN
~
LBEIZZERS

&.100000000000000

Baumé

S P OO0 0COo0Oo00 :

t Newer or so-called * rational * scale,

* Original scale for liquids denser than water.
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' TABLE 7. — SPECIFIC GRAVITIES OF GASES AND VAPORS

REFERRED To WATER AT 4° C.; ALSO TO AIR AND HYDROGEN AT 0° C. AND
760 MM, oF MERCURY PRESSURE

All results are given for a pressure of 760 mm. of mercury

Specific gravity referred to
Substance Formula 'l;um °C.
Water Air Hydrogen
]
Air.....ooo ] 0 0.0012931| 1.0000 | 14.445
Ammonia............ NH;....... 0 0.0007616| 0.5890 8.508
Carbon dioxide. ..... Oz....... 0 0.001965 | 1.520 21.955
Chlorine..... ...... | PO g 8.00316’{4 gggﬂgé 32?8%
.00042 . .71
Coalgas............ I { 0 0.000667 | 0 5158 v 452
Hydrogen........... Hp........ 0 0.0000895| 0.0692 1.000
Nitrogen............ Ngooontl o 0 0.0012546 0.9701 | 14.013
Oxygen.............. O 0 0.0014292| 1.1052 | 15.964
" Acetic acid.......... CH;COOH | 125 0.00414 | 3.2 46.2
) 250 0.00269 | 2.08 30.0
Amyl bromide....... C:HyBr....[ 152 0.00703 | 5.43 78.5
’ 196 0.00604 | 4.67 67.5
295 0.00412 | 3.18 46.0
360 0.00340 | 2.63 38.0
Ammonium chloride *| NH(CI..... 300 0.00128 | 0.986 14.23
360 0.00122 | 0.944 13.63
448 0.00120 | 0.932 13.45
Iodine............... ) PYR 448 0.01130 | 8.74 126.9
: 680 0.01064 | 8.23 118.8
0.01043 | 8.07 116.5
1043 0.00906 | 7.01 101.2
1275 0.00753 | 5.82 84.0
’ 1468 0.00657 | 5.06 73.0
Nitrogen peroxide....| NyOs...... 4.2 | 0.00335 | 2.588 37.36
49.6 | 0.00204 | 2.27 32.77
60.2 | 0.00269 | 2.08 30.03
70.0 | 0.00248 | 1.92 27.72
90.0 | 0.00222 | 1.72 24.83
100.1 | 0.00217 | 1.68 24.25
154.0 | 0.00204 | 1.58 22.81

* Ammonium chloride vapor gives abnormal vapor densities only when in presence of moisture
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TABLE 8. — COEFFICIENTS OF FRICTION

- Substance Static coefficient u Kinetic ooefficient b
from from
Metals on metals (dry)............. 0.2 to0.4 0.18t0 0.35
Metals on metals (wet)... 0.15t00.3 0.14t00.28
Metals on metals (oiled). .. 0.15t00.2 0.14t00.18
Wood on wood (dry)*........ 0.5 t00.7 0.2 t00.3
Wood on wood (dry) t.............. 0.4 t00.6 0.18t00.3
Leather belt on wood pulley........ 0.45t00.6 0.3 t00.5
Leather belt on iron pulley......... 0.25 t0 0.35 0.2 t00.3

* Motion in direction of fiber.

 t Motion normal to fiber of sliding block.

TABLE 9. — ELASTIC CONSTANTS OF SOLIDS

N.B. — Flexural Resilience per unit volume equals one-ninth the Tensile Resilience
per unit volume

Young’s Elastic Breaking Simple Tensile
modulus limit stress rigi«ﬂty resilience
Sut
dynes| Ibs. |dynes| Ibs. |dynes| Ibs. |dynes| Ibs. | ergs | ft. Ibs.
sq.cm.|8q. in.|sq.cm.|8q. in.|sq.cm.|8q. in.|sq.cm.|8q. in.|cu. cm.| cu. ft.
Multiply by ..[ 10 | 10 | 108 | 103 | 108 | 10% | 10 | 10° | 10* 1
Brass
cast........ 6.5/ 9 4.5 6 20 30(2.4)|3.5 16 330
wire........| 10 | 14 11 16 60 80 | 3.7 ] 6.4 60 1300
COPPER:
annealed 10 | 14 3 4 31| 48 )...10... 5 100
cast........ 12 17 4.5 6.3 18 2514.0]6.0 8 170
wire........ 12 17 7 10 40| 55 |4.5]16.5 20 420
Grass........ 6.5 9 2.3 3.2(129 (3-12({2.4{3.5 4 80
IroN:
annealed....| 21 | 30 5 7 50 70(...]... 6 130
cast........ 12 17 7 10 151 20(5.3]7.6 20 420
wire........ 19 |26 |20 |30 60 85 | 8.0 |12.0 100 2000
wrought....| 20 |28 |20 | 30 40| 55 (7.7 11.0 [ 100 2000
Bessemer...[ 22 (31 133 | 46 70 | 100 o] 250 5200
cast... 120 |28 40 60 | 8.0 |12.0 |15600 (1120000
hearth 121 30 701100 | ... | oo | ceee ] ounes
wire. . . 19 |26 (*40 |*60 | 110 [ 150 | ... *420 | *8800
Woobs
oak. 1.0 1.4 2.3 3.2r 15 27 560
pine. L1l 1.6 2.4 3.3 t4 5] ... 26 540
poplar 0.5 0.7 1.5 2.2| 13 4] ... 23 480
* Unannealed. t Paralle' to grain. t Hardened.
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TABLE 10. — VISCOSITIES OF WATER AND AQUEOUS SUGAR
SOLUTIONS

n denotes the coefficient of viscosity in c.g.s. units, 2, 2, etc., the spe-
cific viscosity, or viscosity relative to water at 0° C., 20° C., ete.

(a) WATER AT DIFFERENT TEMPERATURES

Temp. 7 29 Temp. L) 29
0° 0.01809 1.000 30° 0.00812 0.449
b 0.01530 0.846 40 0.00664 0.367
10 0.01326 0.733 50 0.00570 0.315
16 0.01150 0.636 60 0.00487 0.269
20 0.01016 0.562 70 0.00424 0.235
26 0.00903 L1 T T | N H

P:;:::t 2 P::::;lt P P:l;::t P
2 1.0521 12 1.4110 22 2.0552
4 1.1104 14 1.5092 24 2.2454
(] 1.1840 16 1.6196 26 2.4540
8 1.2576 18 1.7484 28 2.7055
10 1.3312 20 1.8895 30 3.0674

TABLE 11. — THE GREEK ALPHABET

Letter Name Letter Name Letter Name
A« Alpha I, ¢ Iota P, o Rho

B, 8 Beta K, « Kappa Z, 0 Sigma
T, ~ Gamma AN Lambda T, r Tau

A b Delta M, u Mu Y, v Upsilon
E e Epsilon N, » Nu P, ¢ Phi

Z, ¢ Zeta 2 ¢ Xi X, x Chi

3 Eta 0, 0 Omicron || ¥, ¢ Psi
o,0 Theta II,» Pi Q w Omega
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IN ORDER TO OBTAIN THE VOLUME THE MASS WOULD

TABLE 12. — FACTORS BY WHICH THE VOLUME OF A FIXED
BAROMETRIC PRESSURE (IN INCHES OF MERCURY), AND

8383332888838588838588523583583

COO0OO0COOOOOOOCOCCOOO rmt rei ret vt vt vt vt v vt vl ved

83335285385 ERR22838828 22888888

COOCOOOOOOOCOOOCOCCOD vt vt rd v vt vt ved vl vt vt vt =t

33588888 8EE5228888853 358355835853

COCCOOOCOOCOOCOCO O v vt vt ri v vt vl vt vd 7=t v vl vd =i

3825238555 8223535388532838888353

COCOOOOCOOOOCOOO O rt vt vt vl vt vt vt vt v vt ved vt 7=t v 7=

BE23885EE8883888355553583533%53

COCOOOCCOCOCCOCCOOC v v vl v vt vt vt vl vt ot yd vt vl pomd ek vt

2BEEEEEE283338885558888883888583

COOO0OOOCOCOCOOO r vl vl yed vl vd vt vt v vd ved vt vt vt yod 7d vt veed

Temperature

ER85EERE288858855288388533522853

COOCOCOOOCOCO O rmi ved vt vt vt vt vt vt vt vt vd vt vl vt yoed vt vt vt vt

8855888280222 22000a2 80T I0ERREE

COCOOOOOD D rmi ved vt vl v vyt yod pomd yod v v yed vl yod vt 7t pomd v y=d 7=t

§5583833823882 2288388383885 8385E

COCOCOCOOO rt vt red vt rd vt vt vt vt vt vt vt vt vt vd vl voed vt =l vt yod 7t

S b bbb E L EEE R

COOC0CCOCOO O r vt vt vt v v vt vt vt vt v vt yd vt vt yoed ol et vt Pomd yoed vd

40°F. |42°F.|44°F. |46°F.[48°F.|50°F.|52°F. | 54°F. | 56° F. | 58° F. | 60° F.

§8232382555200888832288285 5888

Pressure in
Fheid

mercury

CrNMNMHFOTXNO NN H DOV DNO=NMNH DO~ O

RRBRRBRRRRIIIIIIJIKXIJIKICBIIIIIIIRES
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BERE283338323852308888853322883%

COOOCOOOOOOOOOOOOOOOOOOOOOOOOOO

BE38828853355358583853354588858

COO0COCOOOOOOOOOOOOCOOOOOOOOOOOOO

335838335535 5858883338888883E55

COOOOOOOOOOOOOOOOOCOOOOCOCOOOOO

B328883855585883393382888858E8

COOCOCOOOOCOOOOOOOOOOOOOOOOOOOOC

L EEEEER R EE R R EREERE IS I

...............................

CCOCCOCOOCOOOOOOOOOOOOOOOOOOOOOD

8835535835885399288828RER222RE8

COOOOCOOCOOOOOOOOOOOOOOOOOOOOOOO

Temperature

CEEEEEEEEEEERREEEERRE R R

OO O OOOOOOOOOOOOOOOOOOOOCOOOOOO~
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EEEEREEEEER R L IS P IR EEEE

COOOCOOOOOOOOOOOOOOOOOOOOOOO mrmm

CEEEEEEERREEEEEREE R R L

COO0OOOCOOOOOOOOOOOOOOOCCCOO mirirmir

5538538539528228555228388588588

OO0 OCCOOOOOCOOOOOOOOOOOOO rimrmird it

858858953888 2885582228828855588

COO OO OOCOOOOOOOOOOOO rirtririv vy

62°F.|64°F.|66°F.|68°F.|70°F.|72°F.|74°F.|76°F. | 78°F.|80°F. | 82° F. | 84°F.

5825335528328555228388838555888

COCOOOOOOOOOOOOOOOCOCOO i

h
cury

MASS OF GAS SATURATED WITH WATER VAPOR, AT A GIVEN
AT A GIVEN TEMPERATURE (IN °F.), MUST BE MULTIPLIED,

HAVE AT 30 INCHES OF MERCURY AND 60°F.

of mer-

sure in

CrNMNHENOONO= NN IO VRO ~ANRHINO~0ONO

RRRRRRRRRRIIIJIAIARIIBIIIIIBRE\S
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TABLE 13. — VALUES OF

The angles whose sines squared are given below are indicated in the
unity



SIN29 AND COS20
first column and first line. The cosine squared of any angle equals
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9° 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
45 |0.5000/0.5017/0.5035/0.5051|0.5070(0.5086/0.5105/0.5122/0.5141|0.5157
46 [0.5174/0.5193/0.5210(0.5226/0.5243(0.5263(0.5280(0.5297(0.5314(0.5331
47 [0.5351/0.5365/0.5383/0.5400/0.54180.5435(0.5453|0.5470(0 . 5488/0.5506
48  |0.5523|0.5541|0.5557(0.5575(0.5593|0.5611/0.5626(0.5644|0.5663|0.5678
49 10.5696|0.5712(0.5731|0.5746/0.5765(0.5781(0.5800{0.5816/0.5834/0.5851
50 |0.5869(0.5886|0.5902(0.5921/0.5937|0.5954|0.5970|0.5990(0.6006/0 . 6023
51 |0.6046(0.6056(0.6073/0.6090/0.6107|0.6124/0.6140|0.6157|0.6174/0.6192
52 |0.6209/0.6226(0.6243]|0.6260]0.6280|0.6295/0.6310/0.6327(0.6345)0.6362
53 |0.6377|0.6394/0.6412/0.6430/0.6445/|0.6462(0.6477|0.6495(0.6513/|0.6528
54 |0.6546(0.6561(0.6580(0.6595|0.6610/0 . 6628]|0.6644/0.6662|0.6677|0.6693
55 0.6710(0.6727(0.67420.6759/0.6775/0.6792(0.6808/0.6823|0.6841/0.6856
56 10.6872/0.6890(0.6906/0.6922(0.6937/0.6953(0.6970|0.6986/0.7002/|0.7018
57 |0.7034/0.7050/0.7065|0.7081]0.7097(0.7114/0.7129|0.7145/0.7160(0.7176
58 0.7191/0.7208|0.7223]0.7238|0.7254|0.7270/0.7284/0.7301/0.7316/|0.7332
59 |0.7347/0.7362(0.7377|0.7393/0.7408|0.7423/0.7439|0.7454/0.7470/0.7485
60 |0.750110.7514(0.7530/0.7544(0.7560]0.7575(0.7589/|0.7605/0.7621(0.7635
61 |0.7649|0.7665|0.7679|0.7693(0.7707|0.7723(0.7737|0.7752/0.7768|0.7782
62 |0.7796/0.7811|0.7825/0.7840(0.7854]|0.7869(0.7881|0.7896(0.7910/0.7925
63 0.7940|0.7952|0.7967|0.7982/0.7995|0.8009(0.8022|0.8037(0.8050|0.8065
64 |0.8078|0.8093/0.8106/0.8119/0.8134/0.8147(0.8160/0.8173/0.8187/0.8200
65 |0.8215(0.8228|0.8241/0.8255(0.8268(0.8279|0.8293|0.8306|0.8320/0.8333
66 |0.8346/0.8360(0.8372(0.8385(0.8397|0.8410]0.8424(0.8435(0.8449(0.8461
67 10.8474/0.8486(0.8498|0.851110.8523|0.8535/0.8549/0.8561(0.8572(0.8584
68 |0.8596/0.8608/0.8622|0.8634/0.8646/0.8658(0.8670]0.8680(0.8692(0.8704
69 |0.8716/0.8728/0.8740/0.8750(0.8762|0.8774/0.8784(0.8796/0.8808|0.8819
70 |0.8831]0.8841/0.8853/0.8863|0.8876/|0.8886/0.8896/|0.8908|0.8919(0.8929
71  |0.8939/0.8952/0.8962(0.8972|0.8983|0.8993(0.9003/0.9014]0.9024/0.9034
72 |0.9045(0.9055(0.9066(0.9076|0.90870.9095/0.9105/0.9116/0.9126/0.9135
73 10.9145/0.9156(0.9164/0.9175(0.9183/0.9194/0.9203/0.9213/0.9221(0.9230
74 |0.9241|0.9249(0.9258]0.9268|0.9277]0.9285/0.9294/0.9305/0.9313(0.9322
75 |0.9330/0.9339/0.9348|0.9356(0.9365/0.9374(0.9382(0.9391/0.9397|0.9406
76  [0.9415/0.9423{0.9432/0.9438(0.9447|0.9456(0.9463/0.9471/0.9478|0.9486
77 10.9493(0.9502(0.9508]0.9517/0.9524|0.9532(0.9539/0.9546/0.9554|0.9561
78  |0.9568|0.9574(0.9581]0.9590(0.9596]0.9603(0.9609(0.9616/0.9623|0.9629
79 |0.9636/0.9643(0.9650|0.9656|0.9660/0.9667(0.9674/0.9681|0.9687(0.9692
80 0.9698|0.9704|0.9710(0.9716/0.9722/0.9728|0.9733/0.9739(0.9744/0.9750
81 ]0.9755|0.9761|0.9766(0.9771(0.9777|0.9782(0.97870.9792/0.9797(0.9801
82 ]0.9806/0.9811]0.9816|0.9820/0.9825/0.9830|0.9834/0.9838/0.9843(0.9847
83  [0.9852(0.9856/|0.9860(0.9864(0.9868|0.9872/0.9876(0.9880|0.9883|0.9887
84 0.9891/0.9894/0.9898/0.9901|0.9905(0.9908|0.9912|0.9915(0.9918/0.9921
85  |0.9924/0.99270.9930/0.9933/0.9936/0.9938|0.9941]0.9944/0.9946|0.9949
86 10.9951|0.9954|0.9956(0.9958/0.9960/0.9963|0.9965/0.9967(0.9969/0.9971
87 ]0.9973|0.9974/0.9976/0.9978/0.9979/0.9981|0.9983(0.9984/0.9985/0. 9987
88  10.9988|0.998910.9990(0.9991(0.9992/0.9993/0.9994/0.9995 0.9996(0. 9996
89 0.99970.99980.9998|0.99990.99990.99991.00001.0000 1.0000|1.0000
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TABLE 14.— ABSOLUTE INDEX OF REFRACTION OF VARIOUS
SUBSTANCES, FOR THE D LINE, A = 5893 &

Values for gases are for a temperature of 0° C. and pressure of 76 cm. of
mercury. For other substances, values are for a temperature of 20° C.,
unless otherwise stated.

Air.................. 1.0002926 || Calcspar (ord. ray)........ 1.658
Carbon dioxide. .. ... 1.00045 (exord. ray)...... 1.486
Water vapor......... 1.00025 Diamond.................. 2.43

Canada balsam. ... .. 1.54 Fluorite................... 1.434
Cassia oil...... e 1.603 Ice (at —8° C.) (ord. ray)..| 1.309
Carbon disulphide...| 1.618 (exord. ray)| 1.313
Cinnamon oil...... ... 1.619 Rocksalt.................. 1.544
Ethyl alcohol........ 1.361 Quartz (ord. ray).......... 1.539
Water............... 1.333 (exord. ray)........ 1.548

TABLE 15. —INDEX OF REFRACTION AND DISPERSION OF
OPTICAL GLASSES

The second column gives the index of refraction for the D line, and the
third column gives the dispersion between the C and the F Fraunhofer
lines.

"p ("7 — nc)

« Light phosphate crown glass.................... 1.5159 - 0.00737
Barium-silicate crown glass....................| 1.5399 0.00909
High-dispersion crown glass.................... 1.5262 0.01026
Borate flint glass. . ......coooviiiiiiiiiii 1.5686 0.01102
Extra light flint glass. ................ ... 1.5398 0.01142
Heavy flint glass................oooiiiiiiiiit 1.7174 0.02434
Heaviest flint glass. .............ooii it 1.9626 0.04882
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TABLE 16. — WAVE-LENGTHS OF THE PROMINENT LINES

OF THE VISIBLE SOLAR SPECTRUM

At 15° C. and 76 cm. mercury pressure

The letters under the heading ‘‘ Line ’’ are the designations used by

Fraunhofer.

. Wave-lengths in . Wave-lengths in
Line Due to ngstrdm units Line Due to ngstrém units
A 0o 7593.8 by Mg 5167.3
B o 6867.2 F H 4861.4
¢ H 6562.8 Q H 4340.5
D, Na 5895.9 q { Ca 4307.7
D, Na 5890.0 Fe 4307.9
E Fe 5269.6 h H 4101 9
b Mg 5183.6 H Ca 3968.5
bs Mg 5172.7 K Ca 3933.7







. INDEX TO VOL. I

Abbé refractometer, 130.
Acceleration due to gravity, 62.
Accommodation of the eye, 195.
Accuracy required, 6.
Alcoholimeter, 51.
Amagat and Jean’s oleorefractometer,
136.
Amyl-acetate lamp, 106.
Approximations, 7, 8.
Astigmatism of the eye, 196.
Autocollimating spectroscope, 148.

Balance, Mohr-Westphal, 48, 54.

Ballistic pendulum, 67.

Bar photometer, 173.

Beam balance, 25, 31.
sensitivity of, 28, 37.

Brace spectrophotometer, 156.

Bulk modulus, 35.

Bunsen photometer screen, 112,

Butyro refractometer, 132.

Caliper, vernier, 17.
Candle, standard, 107.

-foot, 107.

-lumen, 107.

-lux, 107.
Cardinal points of a lens, 113, 114.
Cathetometer, 18.
Chromatic aberration, 115, 186.
Circle of least confusion, 116.
Clarification of sugar, 173.
Coincidences, method of, 63.
Colorimetry, 161.
Compensation, quartz-wedge, 168.
Composition of a mixture from re-

fractivities, 211.

Concave diffraction grating, 145.
Concave grating spectrometer, 220-
223.

Concentration of asolution, molar, 163,

normal, 163.

by colorimetry, 229.

by spectrophotometry, 225.
Critical angle of incidence, 123.
Curvature of a spirit level, 58.
Curve plotting, 9.

Dawes’ refractometer, 137.

Densimeter, 51.

Density and specific gravity, 32, 42-
46, 48, 51.

Deviation of a prism, minimum, 122
210.

Diffraction grating, plane, 140.

concave, 145.

Dipping refractometer, 129.

Direct vision spectroscope, 148.

Dubosc colorimeter, 162, 229.

Eccentricity of a circle, 56.

Elasticity, 34.

Equivalent points of a lens, 114, 186~
192.

Errors, 2.

Eye, study of the, 194,

Eyepieces, 198.

Eyepiece micrometer, 15.

Extinction coefficient, 152.

Far sight, 196.

Féry refractometer, 133.
Figures, trustworthy, 4.

Filar micrometer microscope, 14.
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Flicker method of photometry, 110,
] 185.

Focal lengths of lenses, 186-192.
French sugar scale, 169.

Friction, 33, 69-73.

Gauss method for magnifying power,
203.

Gauss points of lenses, 113.

Gladstone and Dale’s specific refrac-
tivity, 126.

Grating spectrometer, 217, 220.

Gravity, acoeleratioxll due to, 62.

Half-shade polarimeters, 165.
Harcourt pentane lamp, 108, 177.
Hefner lamp, 106.
Hefner-lumen, 108.

-lux, 106.

-meter, 107.
Huyghens’ eyepiece, 198.
Hydrometer, 51. :

Tlumination, 106.

Illuminating power of a gas, 173, 177.
Immersion refractometer, 129.
Indices of refraction, 120.

Inversion of sugar, 171.

Joly’s photometer screen, 112.

Koenig’s spectrophotometer, 157.
Kuehne’s eye model, 194.

Laurent’s half-shade polarimeter, 165. .

Least confusion, circle of, 116.

Least count of vernier, 15.

Leeson photometer screen, 112.

Lemon-Brace spectrophotometer,
156.

Lens testing bench, 188-193.

Level trier, 59.

Light units, 106.

Limit of resolution, 117.

Lippich half-shade polarimeter, 167.

London gas referees’ photometer, 177.
Longitudinal spherical aberration,
186, 196.

INDEX

Lorenz specific refractivity, 126.
Lummer-Brodhun photometer, 113.
Lux, 106.

Magnifying power of a telescope, 202.
Martens-Koenig’sspectrophotometer,
157, 225. '

Mean horizontal candle-power, 180.
Mean spherical candle-power, 181.
Mean spherical hefner, 106.
Mean spherical candle, 107.
Meter stick, 12.
Micrometer screw, 12.
caliper, 13.
filar, 14.
eyepiece, 15.
Minimum deviation of a prism, 122,
210. )
Mohr-Westphal balance, 48, 54.
Molar solution, 163.
Molecular refractivity, 127.
Moment of inertia, 33, 76, 79.

Near sight, 196.
Nodal points of a lens, 114.
Normal solution, 163.

Oleorefractometer, 136.

Pendulum, simple, 62.

ballistic, 67.
Pentane lamp, 108, 177.
Percussion, center of, 68.
Photometry, 108-110.
Photometer, bar, 173.

screens, 112.

table, 177.
Photoped photometer screen, 112.
Plane diffraction grating, 140.
Planimeter, 19, 55.
Polarimeters, 165-169.
Polarization, rotation of plane of, 163.
Principal points of a lens, 114.
Projectile, speed of, 67.
Pulfrich refractometer, 127..
Pyknometer, 43.



INDEX

Quantitative spectrum analysis, 225.
Quartz-wedge compensation, 168.

Ramsden’s eyepiece, 198. .

Refractive index, 120, 121, 208, 211.

Refractivity, specific, 126.

Refractometers, 127-137.

Resolving power, 116-120, 206.

 Rotation of the plane of polarization,

163.

Rotatory dispersion, 164.

Rowland’s concave grating spectrom-
eter, 220.

Saccharimeter, 169.
Saccharimetry, 170.
Salinimeter, 51.
Schulz absorption cell, 227.
Simple rigidity, 36, 91.
Slide modulus, 36.
Specific gravity, 32, 42-51.
Specific rotation, 164, 171.
Spectra, 146, 212,
Spectrograph, Steinheil’s, 219.
Spectrophotometers, 154-157.
Spectrophotometry, 230.
Spectroscopes and spectrometers, 147,
209, 215.
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Spectrum analysis, qualitative, 150,
153.

Speed of a projectile, 67.

Spherical aberration, 115.

Spherometer, 13.

Spirit level, 58.

Steinheil’s spectrograph, 219.

Sugar analysis by polarimeter, 231.

Sugar scales, 169.

Table photometer, 177.
Telescopes, 197.

resolving power of, 206.
Trustworthy figures, 4.

Ventzke’s sugar scale, 170,

Vernier scale, 15, 37.
caliper, 17.

Vibrations of a balance, 26.

Viscosity, 36, 95, 99.

Wave-length of light, 219, 220.
Weighing, errors in, 30, 41.
Westphal balance, 48, 54.
Young’s modulus, 35, 81, 84, 89.

Zeiss immersion refractometer, 129,
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